数学《一元二次不等式》教学设计【优秀5篇】

在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。为大家精心整理了数学《一元二次不等式》教学设计【优秀5篇】,在大家参照的同时,也可以分享一下给您最好的朋友。

元二次方程 篇1

教学目标 

1. 了解整式方程和的概念;

2. 知道的一般形式,会把化成一般形式。

3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:

重点:的概念和它的一般形式。

难点:对的一般形式的正确理解及其各项系数的确定。

教学建议:

1.  教材分析:

1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。

2)重点、难点分析

理解的定义:

是 的重要组成部分。方程 ,只有当 时,才叫做。如果 且 ,它就是了。解题时遇到字母系数的方程可能出现以下情况:

(1)的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合的定义。

(2)条件是用“关于 的”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是,解题时就会有不同的结果。

教学目的

1.了解整式方程和的概念;

2.知道的一般形式,会把化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点 和难点:

重点:

1.的有关概念

2.会把化成一般形式

难点: 的含义。

教学过程 设计

一、引入新课

引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

分析:1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3.让学生自己列出方程   (     x(x十5)=150    )

深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

二、新课

1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说首先必须是一个整式方程,但是一个整式方程未必就是一个、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做。(板书的定义)

3.强化的概念

下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是?

(1)3x十2=5x—3:  (2)x2=4

(2)(x十3)(3x·4)=(x十2)2;  (4)(x—1)(x—2)=x2十8

从以上4例让学生明白判断一个方程是否是不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

4. 概念的延伸

提问:很多吗?你有办法一下写出所有的吗?

引导学生回顾的定义,分析项的情况,启发学生运用字母,找到的一般形式

ax2+bx+c=0   (a≠0)

1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称。

3).强调:的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

强化概念(课本P6)

1.说出下列的二次项系数、一次项系数、常数项:

(1)x2十3x十2=O  (2)x2—3x十4=0;  (3)3x2-5=0

(4)4x2十3x—2=0;  (5)3x2—5=0;       (6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x;  (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

课堂小节

(1)本节课主要介绍了一类很重要的方程—一(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

(2)要知道的一般形式ax2十bx十c=0(a≠0)并且注意的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

(3)要很熟练地说出随便一个中一二次项、一次项、常数项:二次项系数、一次项系数。

课外作业 :略

《一元二次方程》的优秀教案 篇2

教学目标:

1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型

2、理解什么是一元二次方程及一元二次方程的一般形式。

3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

教学重点

1、一元二次方程及其它有关的概念。

2、利用实际问题建立一元二次方程的数学模型。

教学难点

1、建立一元二次方程实际问题的数学模型.

2、把一元二次方程化为一般形式

教学方法:指导自学,自主探究

课时:第一课时

教学过程:

(学生通过导学提纲,了解本节课自己应该掌握的内容)

一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)

1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程。。

2、你发现上述三个方程有什么共同特点?

你能把这些特点用一个方程概括出来吗?

3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念

你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?

二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)

1、下列哪些是一元二次方程?哪些不是?

①②③

④x2+2()x-3=1+x2 ⑤ax2+bx+c=0

2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?

4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?

5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?

三、反思:(学生,进一步加深本节课所学内容)

这节课你学到了什么?

四、自查自省:(通过当堂小测,及时发现问题,及时应对)

1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个

(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程。

作业:必做题:习题7.1

选做题:(挑战自我)p41随堂练习

1、已知关于的方程是一元二次方程,则为何值?

2、。当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?

3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?

4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.?

(1)(2)

板书设计:一元二次方程

定义:一个未知数整式方程可以化为

一般形式ax2+bx+c=0(a、b、c为常数,a≠0)

二次项一次项常数项

系数为a系数为b

教学反思

这次我参加了区里组织的优质

课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。

首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间

其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。

再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。

我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。

元二次方程的解法教案 篇3

【知识与技能】

1.理解一元二次方程求根公式的推导过程,了解公式法的概念。

2.会熟练应用公式法解一元二次方程。

【过程与方法】

通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系。

【情感态度】

经历探索求根公式的过程,培养学生抽象思维能力,渗透辩证唯物主义观点。

【教学重点】

求根公式的推导和公式法的应用。

【教学难点】

一元二次方程求根公式的推导。

一、情境导入,初步认识

用配方法解方程:(1)x2+3x+2=0 (2)2x2-3x+5=0

解:(1)x1=-1,x2=-2 (2)无解

二、思考探究,获取新知

如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?

问题 已知ax2+bx+c=0(a≠0),试推导它的两个根

【分析】因为前面具体数字的题目已做得很多,现在不妨把a,b,c也当成具体数字,根据上面的解题步骤就可以推导下去。

探究 一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子 就得到方程的根,当b2-4ac<0时,方程没有实数根。

(2) 叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式。

(3)利用求根公式解一元二次方程的方法叫公式法。

【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示。

例1 用公式法解下列方程:

①2x2-4x-1=0 ②5x+2=3x2

③(x-2)(3x-5)=0 ④4x2-3x+1=0

解:①x1=1+ ,x2=1-

②x1=2,x2=-

③x1=2,x2=

④无解

【教学说明】(1)对②、③要先化成一般形式;(2)强调确定a,b,c的值,注意它们的符号;(3)先计算b2-4ac的值,再代入公式。

三、运用新知,深化理解

1.用公式法解下列方程:

(1)x2+x-12=0

(2)x2- x- =0

(3)x2+4x+8=2x+11

(4)x(x-4)=2-8x

(5)x2+2x=0

(6)x2+2 x+10=0

解:(1)x1=3,x2=-4;

(2)x1= ,x2= ;

(3)x1=1,x2=-3;

(4)x1=-2+ ,x2=-2- ;

(5)x1=0,x2=-2;

(6)无解。

【教学说明】用公式法解方程关键是要先将方程化为一般形式。

四、师生互动,课堂小结

1.求根公式的概念及其推导过程。

2.公式法的概念。

3.应用公式法解一元二次方程。

1.布置作业:从教材相应练习和“习题22.2”中选取。

2.完成练习册中本课时练习的“课时作业”部分。

在学习活动中,要求学生主动参与,认真思考,比较观察,交流与表述,体验知识的获取的过程,激发学生的学习兴趣,利用师生的双边活动,适时调试,从而提高学习效率。

《一元二次方程》的优秀教案 篇4

【教学目标】

(1)理解一元二次方程的概念

(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

(2)会用因式分解法解一元二次方程

【教学重点】

一元二次方程的概念、一元二次方程的一般形式

【教学难点】

因式分解法解一元二次方程

【教学过程】

(一)创设情景,引入新课

实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0

由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

(二)新授

1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

2:一元二次方程的一般形式(形如aX+bX+c=0)

任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

3:讲解例子

4:利用因式分解法解一元二次方程

5:讲解例子

6:一般步骤

(三)小结

(四)布置作业

元二次方程 篇5

[教材分析]

中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。因此一元二次方程便成为了方程中研究的重要内容。一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。

[学生分析]

进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。再加上我所执教的学生,他们有着较强的认知力与求知欲,

基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。

[教学目标]

在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。

能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。

理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。

[教学重难点]

发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程

[教学过程]

(一)复习导入

请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。

(二)探求新知

数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。初探新知中,我将学生们分成两组,分别对二次项系数为 1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。我在这些方程中安排了两个无理根方程。当学生们发现这两个无理根在求和,求积后,竟变成了有理数,而且每一组两根和(积)都与系数有着密切的联系,此时的他们不难对两根和与两根积产生关注,经历了对二次项系数为1的一元二次方程两根和差积商的研究后,确定了课题并获得猜想:“两根和等于一次项系数的相反数, 两根积等于常数项。”对于这一猜想,会有学生提出不同看法,他们提出研究二次项系数非 1 的一元二次方程。学生的质疑启动再探新知。直接研究一元二次方程两根和、两根积与系数的关系。这一环节中我不再给出具体的方程要求研究,故除了部分同学自定义方程求根求和求积后产生猜想,还有部分同学对仍保留在板书部分的求根公式着手进行两根和,积的运算。这两种方案齐头并进,当前者通过不断验证来说明他们猜想的可靠度时,后者通过论证,在严格意义下,说明了此结论的正确性。对于论证中学生出现的问题,我们在第一时间内揪错指正,

在知识初探与再探后,学生获得了新知,得到了一元二次方程根与系数的关系,

三、训练感悟

我将之前从学生那里收集来的错解对照表中方程,询问检验其正误的方法。学生根据已有经验,将其代入方程,进行检验。为寻求更为简便的方法,引出作用一,利用根与系数的关系,不解方程检验两数是否为原方程的根。我再给出两例,便于巩固练习,更明确了只有当两数和(积)同时满足方程两根和(积)的时侯,才是正确的根。当学生们正为找到了一种行之有效的检验方法,高兴不已的时候。突然间,表格中的数据丢失了,我分别隐去了方程的一根及b,c,a三个系数。为了将材料修复,学生小组展开热烈的讨论。有了上一题的经验,学生们会利用根与系数关系,不解方程,求出另一根及系数。也会使用代入求解的方法解题,通过新旧方法的比较,在训练中获得感悟:方法的选择在于简便,学生们在选择了恰当的方法后,修复了材料也巩固了新知。

四、总结提升

由学生回顾知识的发生发展及应用过程,以“我的收获” 与“我的疑惑”交流心得。我再帮助学生整理所学知识,引导领会数学的思想。我还会自豪的告诉他们,数学家们还发现了存在于一元n次方程中的根与系数的普遍关系,这一内容将在高数中有所涉及,激励奋进

五、分层作业

现在的设计较之以往,有所继承,有所变革。

1、研究启动入口不同

过去我总是先给出若干具体方程要求学生求根,并计算两根和(积),作出猜想。这样的数学后曾有学生问我:“老师为什么会想到两根和(积)与系数的关系,而不是其它?”这种疑问的产生一定与过去设计指定了学生的活动过程有关,为了给学生的活动指向更为宽泛,让两根和积与系数的研究更显合理, 现在的设计中主要体现了由数到式的研究,从两根和差积商的重组合再有所观察,有所挑选,方才定位于两根和(积)作进一步的探究。这种设计正是从数学内部下了功夫,由知识线索的连贯性,师生共同理顺了实验对象的来龙去脉,从数学本身上培养了学生的观察、分析、概括的综合能力。

2、探究部分两步走

我将二次项系数为1,非 1的一元二次方程分两次出现,分别放置与知识初探和再探两个环节,这样设计的原因有二:学生的认知能力总是有所差异的,如果将这些方程合二为一加以研究的话,一部分同学对别人获得的正确猜想是瞬间接受,却缺乏思维的参与。事实上,研究事物往往从简单到复杂,在这里,当a=1 时,易找规律,当 a ≠1后造成的认知冲突,更是激发了这一猜想的完善。其实这一串, 由实验——猜想——再实验——再猜想的思维过程,既符合认知规律,也是一种研究性学习的示范,一种创造性能力的培养。为了让每一个学生都亲身参与其中,真正感受由“实践——认识——再实践——再认识” 这一客观世界认知论的基本规律。便是我如此设计的原因之一。原因二:研究入口处,利用两根和差积商的结果,优选出对和积的研究。初探中二次项系数为 1 的方程两根计算足以起到这一筛选作用。因此在下一环节的再探新知中,便自然关闭了对两根差与商相对较为繁琐的计算,直接由两根和积入手研究与系数的关系,提高了研究的效率。

3、再探新知放手走

我没有再给出任何具体的方程以供研究,这里的放手,引出了学生不同的操作方法。一部分学生把注意力转放在求根公式上展开直接论证,就连另一部分学生自定义方程数据研究的方式也各不相同,他们有的翻开笔记本查阅之前解方程的资料;有的反凑特殊值方程;更有的会从中提炼出代数论证的方法;当然也有借助于计算器完成了繁琐的计算。

放手的探究,为了给学生更大的思维空间,让学生有更多方法的选择,从而展开自主的学习。

[尾声]

但原学生们带着对数学的兴趣与喜爱,在学的海洋里,奋勇搏击。而作为一名青年教师的我,亦将在教学的舞台上,不断求索。多由学生所想来引导;多设角度空间去探究;多从细节处渗透数学思想,充分利用数学课堂来达成文化传承与发展创新的协调统一。

一键复制全文保存为WORD
相关文章