要想在高考数学考场上考出优异的成绩,不但需要扎实的基础知识,临考答题技巧也是非常重要的,下面给大家分享一些关于全国卷高考数学技巧方法,希望对大家有所帮助。
1调整好状态,控制好自我。
(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。建议同学们提前15-20分钟到达考场。
2通览试卷,树立自信。
刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。
3提高解选择题的速度、填空题的准确度。
数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。
4审题要慢,做题要快,下手要准。
题目本身就是破-解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。
找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
5保质保量拿下中下等题目。
中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
6要牢记分段得分的原则,规范答题。
会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。
难题要学会:
(1)缺步解答:聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多少,能演算几步就写几步。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半。
(2)跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以假定某些结论是正确的往后推,看能否得到结论,或从结论出发,看使结论成立需要什么条件。如果方向正确,就回过头来,集中力量攻克这一“卡壳处”。如果时间不允许,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。今年仍是网上阅卷,望广大考生规范答题,减少隐形失分。
1.倒着解题。
大多数人读书,顺着读书。但是倒着读书,你尝试过吗?一般来说,成语、故事、寓言、俗语等都可以作为“逆向”阅读与训练。在阅读和写作时,运用逆向思考,可以颠覆一般的想法,可以激发新的观点,促使你想到少有想到的东西。顺着解题,在数学上是“由因索果”的思维方式。倒着解题,在数学上是“由果索因”的思维方式。如分析法、反证法、排除法等都是这种逆向思考方式。
在数学解题过程中,应用倒着解题的逆向思考,将会使你在困惑的解题过程中,发现新的思维曙光,顿悟“柳暗花明又一村”的心理感觉,体验学习成功后的乐趣与快感。倒着解题,是培养逆向思维的好方法。
在平时,加大逆向思维训练,才有可能在高考考试中,涌现一些新的独特的解题方法。否则,用传统的数学方法去解决一些高考难题,步骤冗长、繁琐、思维容易陷入困顿。但是,在高考紧张的时间面前,应用 “倒着解题”的逆向思考方式,有时你可能会灵光乍现、思维豁然开朗,一下子有醍醐灌顶的感觉,难题3~5分钟就可以解决。
2.大题小作。
在高考答卷过程中,不同题型要采取不同的方法进行解决。对于选择题与填空题,由于只填写结果,一步到位,应使用分析、估算、极值、排除、验证、转化等快捷方法,进行信息甄别,直接寻找结果,也可以利用特殊数、特殊值、特殊图形、特殊元素、特殊位置等特殊方法,尽量降低数学运算,简化数学过程,拨开迷雾见晴天,熟练、精准、快捷地解答,切忌“考场上小题大做”,避免在时间与思维上的浪费。
3.大题细作。在高考考试中,由于数学按步骤给分,对于解答题的解决,应该把握好几个答题原则:注意解题步骤的严谨性与规范性;注意“书写的规范、表达的准确、语言的科学”,特别注意在得分点上要详写、而且还要写清楚。否则,会做的题目稍不注意,常会被阅卷老师“分段扣分”。如用均值不等式解题,不要漏掉等号成立的条件。概率解题,不能只列出几个式子或结论,就草率了事,也要用适当文字加以说明。
4.发现“题眼”。
在高考考试中,发现题目题干中的“关键词”,即“题眼”,可使解题事半功倍。如2019年全国理科Ⅰ卷第5题,在题干“函数f(x)=在的图像大致为( )”中,可提炼出 “图像”这个重要信息关键词,把-x代入函数,得到f(x)是奇函数,再把特殊数值“π”代入,得到f(x)>0,便可得到结果,筛选出选项。
5.图解高考题。
图解法,就是数形结合法,即通过数与形的相互对应与转化来解决数学问题,主要包括“以形助数”与“以数解形”两个方面。一般来说,涉及函数、不等式、方程、确定参数的范围等问题时,应用数形结合法解决比较快捷、方便。
6.九九归一法。
老子在《道德经》中所言:一生二,二生三,三生万物,万物变幻,九九八十一变,又循环归一。但这种“周而复始”的循环往复,以至无穷,不是原地的轮回,而是由起点到终点,再由终点到起点,形成的一种螺旋式前进和发展的运动过程。
九九归一,就像日月交替、寒来暑往、四季轮回一样,周而复始,循环往复。九九归一,从本质上讲,就是数学的周期与周期现象。因此,数学的“周期现象”、“重复操作”、“同理上述”等数学内容,都可用“九九归一”的周期方法予以解决。如高考的“程序框图”题、“二次函数图形重复”题、“三角函数周期”题、“算法重复操作”题等等,一经发现都可用此法解决。
7.系统思考法。
彼得·安吉在《第五项修炼》中说:
“如果没有系统思考,各项学习修炼到了实践阶段,就失去了整合的诱因与方法。”
全国卷高考数学技巧方法相关文章: