人教版八年级上册数学电子课本

预习课本能够帮助大家更好的理清将要学的内容的知识脉络,那么关于人教版八年级上册数学怎么学习呢?以下是小编准备的一些人教版八年级上册数学电子课本,仅供参考。

八年级上册数学电子课本

查看完整版可微信搜索公众号【5068教学资料】,关注后对话框回复【8】获取八年级语文八年级数学八年级英语电子课本资源。

八年级数学上册知识点

一、平移

1、定义

在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。2、性质

平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。

二、旋转

1、定义

在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。

2、性质

旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。

三、四边形的相关概念

1、四边形

在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性

3、四边形的内角和定理及外角和定理

四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于(n2)180°;多边形的外角和定理:任意多边形的外角和等于360°。6、设多边形的边数为n,则多边形的对角线共有

n(n3)2条。从n边形的一个顶点出

发能引(n-3)条对角线,将n边形分成(n-2)个三角形。

四.平行四边形

1、平行四边形的定义

两组对边分别平行的四边形叫做平行四边形。2、平行四边形的性质

(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等

(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定

(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形

(5)定理4:一组对边平行且相等的四边形是平行四边形

4、两条平行线的距离

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

平行线间的距离处处相等。5、平行四边形的面积

S平行四边形=底边长×高=ah

五、矩形

1、矩形的定义

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质

(1)矩形的对边平行且相等

(2)矩形的四个角都是直角

(3)矩形的对角线相等且互相平分

(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定

(1)定义:有一个角是直角的平行四边形是矩形

(2)定理1:有三个角是直角的四边形是矩形

(3)定理2:对角线相等的平行四边形是矩形

4、矩形的面积S矩形=长×宽=ab

六、菱形

1、菱形的定义

有一组邻边相等的平行四边形叫做菱形

2、菱形的性质

(1)菱形的四条边相等,对边平行

(2)菱形的相邻的角互补,对角相等

(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3、菱形的判定

(1)定义:有一组邻边相等的平行四边形是菱形

(2)定理1:四边都相等的四边形是菱形

(3)定理2:对角线互相垂直的平行四边形是菱形

4、菱形的面积

S菱形=底边长×高=两条对角线乘积的一半

七.正方形

1、正方形的定义

有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质

(1)正方形四条边都相等,对边平行

(2)正方形的四个角都是直角

(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角

(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。

3、正方形的判定

判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。

4、正方形的面积

设正方形边长为a,对角线长为bS正方形=a2b22

八、梯形

(一)1、梯形的相关概念

一组对边平行而另一组对边不平行的四边形叫做梯形。

梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。

2、梯形的判定

(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。

(2)一组对边平行且不相等的四边形是梯形。

(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形

梯形直角梯形特殊梯形

等腰梯形

(三)等腰梯形

1、等腰梯形的定义

两腰相等的梯形叫做等腰梯形。

2、等腰梯形的性质

(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。3、等腰梯形的判定

(1)定义:两腰相等的梯形是等腰梯形

(2)定理:在同一底上的两个角相等的梯形是等腰梯形

(3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)

(四)梯形的面积

(1)如图,S梯形ABCD12(CDAB)DE

(2)梯形中有关图形的面积:

①SABDSBAC;

②SAODSBOC;

③SADCSBCD八、中心对称图形

1、定义

在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

第四章数量、位置的变化

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ab时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征(

1)、各象限内点的坐标的特征点P(x,y)在第一象限x0,y0

点P(x,y)在第二象限x0,y0点P(x,y)在第三象限x0,y0点P(x,y)在第四象限x0,y0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上y0,x为任意实数点P(x,y)在y轴上x0,y为任意实数

点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

(6)、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于y

(2)点P(x,y)到y轴的距离等于x

(3)点P(x,y)到原点的距离等于x2y2

三、坐标变化与图形变化的规律:

坐标(x,y)的变化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+a图形的变化被横向或纵向拉长(压缩)为原来的a倍放大(缩小)为原来的a倍关于y轴或x轴对称关于原点成中心对称沿x轴或y轴平移a个单位沿x轴平移a个单位,再沿y轴平移a个单第五章一次函数

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成ykxb(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数ykxb中的b=0时(即ykx)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:

一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。

k的符号b的符号函数图像yb>00xyb0xyb0时,图像经过第一、三象限,y随x的增大而增大;

(2)当k0时,y随x的增大而增大(2)当k(1)平均数:一般地,对于n个数x1,x2,,xn,我们把个数的算术平均数,简称平均数,记为x。

(2)加权平均数:

1n(x1x2xn)叫做这n

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

八年级数学上册测试题

一、选择题(10小题,每题3分,共30分)

1.在实数、0、、-1、2-π、中,无理数的个数是

A.2个B.3个C.4个D.5个

2.以直角三角形的两直角边为边长所作正方形的面积分别是9和16,则斜边长为( )

A.25B.5C.15D.225

3.如果三角形的三边5,m,n满足,那么这个三角形是( )

A.锐角三角形B.直角三角形C.钝角三角形D.无法确定

4、下列说法正确的是()

A.的立方根是0.4B.的平方根是

C.16的立方根是D.0.01的立方根是0.000001

5.若一个数的立方根等于这个数的算术平方根,则这个数是()

A.0B.0和1C.1D.±1和0

6.下列计算正确的是( )

A、=B、C、D、

7.若-3,则的取值范围是().

A.>3B.≥3C.<3D.≤3

8.若代数式有意义,则的取值范围是()

A.B.C.D.

9、如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是()

A、B、1.4C、D、

10.如图,已知在中,,,分别以,为直径作半圆,面积分别记为,,则+的`值等于()

A.9B.25C.50D.16

一、填空题(共10小题,每小题3分,共30分)

11、的算数平方根是,

12、1-的相反数是_______,绝对值是__________.

13、一个实数的平方根大于2小于3,那么它的整数位上可能取到的数值为__________.

14、计算:(1)=,(2)=.

15、比较________(填“<”“>”“=”).

16、如果=2,那么(x+3)2=______.

17、在Rt△ABC中,斜边AB=2,则AB2+BC2+CA2= .

18、把一根12厘米长的铁丝,从一端起顺次截下3厘米和5厘米的两根铁

丝,用这三条铁丝摆成的三角形是 .

19、一个三角形三边分别为8,15,17,那么最长边上的高为 .

20、已知,则由x,y,z为三边的三角形是 .

四、解答题(共40分)

21、计算题(每小题5分,共15分)

1)2)

22、(本小题6分)如图3,在四边形ABCD中,∠BAD=∠DBC=90°,若AD=4cm,AB=3cm,BC=12cm,求CD的长及四边形ABCD的面积.

23、(本小题6分)已知是的整数部分,是的小数部分,求的值。

24、(本题6分)已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值。

25、(7分)如图,一架长25米的云梯,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑5米,那么云梯的底端在水平方向将滑多少米?(保留一位小数)

八年级数学上册教案

一、班级情况分析:

本学期一(1)班有学生40人,新转学来一名女生。上学期末考试及格人数28人,高分人数3人,优秀人数15人,虽然学生成绩在年级排名第一,能过镇中线,但是学生未能发挥出真实水平。优秀临界生以及及格临界生的提升潜力较大。

一(7)班有学生38人,上学期末考试及格人数18人,高分人数2人,优秀人数5人,全班优秀学生不多不够拔尖,成绩中层的学生占据大部分。学生好动,对数学学习的积极性普遍不够高,学生好动,课堂气氛较活跃。学生数学基础不扎实。提升空间较大。

两班的整体成绩均不够理想。

二、教材分析:

本套教材切合《标准》的课程目标,有以下特点:

1.为学生的数学学习构筑起点,提供大量数学活动的线索,成为供所有学生从事数学学习的出发点。

2.向学生提供现实、有趣、富有挑战性的学习素材。所有数学知识的学习,都力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题,并展开数学探究。

3.为学生提供探索、交流的时间和空间。设立了“做一做”、“想一想”、“议一议”等栏目,以使学生通过自主探索与合作交流,形成新的知识。

4.展现数学知识的形成与应用过程,让学生经历真正的“做数学”、“用数学”的过程。

5.满足不同学生发展的需求。

三、教学目标及要求:

第一章:

1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。

2.经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。

3.了解整数指数幂的意义和正整数指数幂的运算性质,会进行简单的整式加、减、乘、除运算。

4.会推导乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2

第二章:

1.经历观察、操作、想象、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。

2.在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。会用三角尺过已知直线外一点画这条直线的平行线;会用尺规作一条线段等于已知线段、作一个角等于已知角。

3.经历探索直线平行的条件以及平行线特征的过程,掌握直线平行的条件以及平行线的特征。

4.进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实。

第三章:

1.能形象地描述百万分之一等较小的数据,并用科学记数法表示它们,进一步发展数感;能借助计算器进行有关科学记数法的`计算。

2.了解近似数与有效数字的概念,能按要求取近似数,体会近似数的意义及在生活中的作用。

3.通过实例,体验收集、整理、描述和分析数据的过程。

4.能读懂统计图并从中获取信息,能形象、有效地运用统计图描述数据。

第四章:

1.经历从实际问题和游戏中了解必然事件、不可能事件和不确定事件发生的可能性。

2.体会等可能性与游戏规则的公平性,抽象出概率模型,计算概率,解决实际、作出合理决策的过程,体会概率是描述不确定现象的数学模型。

3.能设计符合要求的简单概率模型。

第五章:

1.通过观察、操作、想象、推理、交流等活动,发展空间观念,积累数学活动经验。

2.在探索图形性质的过程中,发展推理能力和有条理的表达能力。

3.进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。

4.了解图形的全等,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。

5.在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。

第六章:

1.经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维。

2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量。

3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力。

4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。

第七章:

1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念。

2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。

3.探索并了解基本图形的轴对称性及其相关性质。

4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴。

5.欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。

四、教学改革的设想(教学具体措施)

充分体现培优扶困的实施,提高优秀人数和及格人数,减少低分人数,切实做到:

1、根据学生的个别差异。因材施教,热情关怀,循循善诱,加强个别辅导。帮助他们增强学习的信心,逐步达到教学的基本要求,尽量做好培优辅差工作

2、精心设计练习,讲究练习方式提高练习效率,对作业严格要求,及时检查,认真批改,对作业中的错误及时找出原因,要求学生认真改正,培养学生独立完成作业的良好习惯。

3、认真备课,深入钻研教材,坚持自主学习,充分发挥学生的主动学习有积极性,了解学生装学习数学的特点,研究教学规律,不断改进教学方法。

4、坚持学习,多听课,多模仿,虚心向有经验的老师请教教育教学方法。努力提升自身的教学技能。

5、在教学中,加强学生思维能力的培养和非智力因素的培养。多开展数学活动课,扩大学生的视野,拓宽知识面,培养学习数学的兴趣,发展数学才能,发挥学生的主动性,独立性和创造性。

6、开展“一帮一”活动,实行以优带差点的帮助方法,多利用课余时间加强辅导,从基础知识补起,力求使学生一课一得,力求提高优秀率和及格率。

7.课前充分备好课,在课堂教学中特别要体现出培扶,分层次教育。

8.重视学生学习兴趣的培养,激发学生学习数学的内驱力。

9.大胆地深度尝试新的教学方法,要因地制宜,因材施教。

10.重视基础知识过关和单元测试过关工作,及时进行单元总结,做好平时的查漏补缺工作,不遗漏知识盲点。

11.注重对作业、练习纸、练习册、测验卷的及时批改,并尽量做到全批全改,及时反馈信息。

12.多用多媒体教学,使数学生动化。

13.多用实物教学,使数学形象化。

14.实行课课清,日日清,周周清。

15.加强课堂管理,严把课堂质量关,提高课堂效率。

16.抓好学生的作业上交完成情况。

17.加强与学生的交流,做好学生的思想教育与培优辅差工作。

五、拟定本学期教学目标

六、拟定本学期培优扶养计划。

培扶措施

对临界优秀生

在理解题、思维训练题给予方法指导,并要加强书面的表达能力。做到思路清晰,格式标准。基础训练题的过关检测,对每次测试的成绩给予个别指导,多用激励教育。

对临界及格生:

首先加强基础知识的培训,尤其要在选择题、填空题多下功夫。在课堂上、课后对他们多加注意,及时纠正错误。抓好每次单元过关测试工作,抓好时机,多表扬,树立信心。

七、教学内容及课时安排(略)

八、作业格式及批改要求:

作业格式:

1.作业本左边都画上竖线,留约0.5CM空白。

2.每次作业都要在第一行注明日期和作业的出处,如P42,1即课本42面第1题。

3。每题作业之间要留一行隔开,每次作业之间至少留一行空白,再写下一次作业。

批改要求:

1.每题作业都要有批改的痕迹,错的打“×”,对的打“√”,书写要清晰,明确看出错对。

2.每次作业必须全批全改,要体现出层次。作业簿要打分数+等级(等级分A、B、C三等,代表学生的书写成绩。)

3、每次的作业要及时更正,更正时统一在每次的作业后面用红笔更正。

一键复制全文保存为WORD
相关文章