初二数学公式记忆口诀

  “初中数学其实并不难!困住考生的地方无非是在于公式多,今天找来能够帮助同学们记住公式和规律的口诀歌,接下来小编整理了初二数学学习相关内容,希望能帮助到您。

  初二数学公式记忆口诀

  有理数的加法运算

  同号两数来相加,绝对值加不变号。

  异号相加大减小,大数决定和符号。

  互为相反数求和,结果是零须记好。

  【注】“大”减“小”是指绝对值的大小。

  合并同类项

  说起合并同类项,法则千万不能忘。

  只求系数代数和,字母指数留原样。

  去、添括号法则

  去括号或添括号,关键要看连接号。

  扩号前面是正号,去添括号不变号。

  括号前面是负号,去添括号都变号。

  解一元一次方程

  先去分母再括号,移项变号要记牢。

  同类各项去合并,系数化“1”还没好。

  求得未知须检验,回代值等才算了。

  因式分解

  一提二套三分组,十字相乘也上数。

  四种方法都不行,拆项添项去重组。

  重组无望试求根,换元或者算余数。

  多种方法灵活选,连乘结果是基础。

  同式相乘若出现,乘方表示要记住。

  【注】一提(提公因式)二套(套公式)

  根式与无理式

  表示方根代数式,都可称其为根式。

  根式异于无理式,被开方式无限制。

  被开方式有字母,才能称为无理式。

  无理式都是根式,区分它们有标志。

  被开方式有字母,又可称为无理式。

  求定义域

  求定义域有讲究,四项原则须留意。

  负数不能开平方,分母为零无意义。

  指是分数底正数,数零没有零次幂。

  限制条件不唯一,满足多个不等式。

  求定义域要过关,四项原则须注意。

  负数不能开平方,分母为零无意义。

  分数指数底正数,数零没有零次幂。

  限制条件不唯一,不等式组求解集。

  解一元一次不等式

  先去分母再括号,移项合并同类项。

  系数化“1”有讲究,同乘除负要变向。

  先去分母再括号,移项别忘要变号。

  同类各项去合并,系数化“1”注意了。

  同乘除正无防碍,同乘除负也变号。

  解一元二次不等式

  首先化成一般式,构造函数第二站。

  判别式值若非负,曲线横轴有交点。

  A正开口它向上,大于零则取两边。

  代数式若小于零,解集交点数之间。

  方程若无实数根,口上大零解为全。

  小于零将没有解,开口向下正相反。

  象限角的平分线

  象限角的平分线,

  坐标特征有特点,

  一、三横纵都相等,

  二、四横纵却相反。

  自变量的取值范围

  分式分母不为零,

  偶次根下负不行;

  零次幂底数不为零,

  整式、奇次根全能行。

  平行某轴的直线

  平行某轴的直线,点的坐标有讲究,

  直线平行x轴,纵坐标相等横不同;

  直线平行于y轴,点的横坐标仍照旧。

  函数图象的移动规律

  若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀:

  左右平移在括号,上下平移在末稍,

  左正右负须牢记,上正下负错不了。

  一次函数的图象与性质

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,

  k是斜率定夹角,b与y轴来相见,

  k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远。

  二次函数的图象与性质

  二次函数抛物线,图象对称是关键;

  开口、顶点和交点,它们确定图象现;

  开口、大小由a断,c与y轴来相见,

  b的符号较特别,符号与a相关联;

  顶点位置先找见,y轴作为参考线,

  左同右异中为0,牢记心中莫混乱;

  顶点坐标最重要,一般式配方它就现,

  横标即为对称轴,纵标函数最值见。

  若求对称轴位置,符号反,

  一般、顶点、交点式,不同表达能互换。

  反比例函数的图象与性质

  反比例函数有特点,双曲线相背离得远;

  k为正,图在一、三(象)限,

  k为负,图在二、四(象)限;

  图在一、三函数减,两个分支分别减。

  图在二、四正相反,两个分支分别增;

  线越长越近轴,永远与轴不沾边。

  直线、射线与线段

  直线射线与线段,形状相似有关联。

  直线长短不确定,可向两方无限延。

  射线仅有一端点,反向延长成直线。

  线段定长两端点,双向延伸变直线。

  两点定线是共性,组成图形最常见。

  证等积或比例线段

  等积或比例线段,多种途径可以证。

  证等积要改等比,对照图形看特征。

  共点共线线相交,平行截比把题证。

  三点定型十分像,想法来把相似证。

  图形明显不相似,等线段比替换证。

  换后结论能成立,原来命题即得证。

  实在不行用面积,射影角分线也成。

  只要学习肯登攀,手脑并用无不胜。

  列方程解应用题

  列方程解应用题,审设列解双检答。

  审题弄清已未知,设元直间两办法

  列表画图造方程,解方程时守章法。

  检验准且合题意,问求同一才作答。

  添加辅助线

  学习几何体会深,成败也许一线牵。

  分散条件要集中,常要添加辅助线。

  畏惧心理不要有,其次要把观念变。

  熟能生巧有规律,真知灼见靠实践。

  图中已知有中线,倍长中线把线连。

  旋转构造全等形,等线段角可代换。

  多条中线连中点,便可得到中位线。

  倘若知角平分线,既可两边作垂线。

  也可沿线去翻折,全等图形立呈现。

  角分线若加垂线,等腰三角形可见。

  角分线加平行线,等线段角位置变。

  已知线段中垂线,连接两端等线段。

  辅助线必画虚线,便与原图联系看。

  特殊角三角函数值

  三十,四五,六十度,三角函数记牢固;

  分母弦二切是三,分子要把根号添;

  一二三来三二一,切值三九二十七;

  递增正切和正弦,余弦函数要递减。

  10类几何证明题

  1.证明两线段相等

  1.两全等三角形中对应边相等。

  2.同一三角形中等角对等边。

  3.等腰三角形顶角的平分线或底边的高平分底边。

  4.平行四边形的对边或对角线被交点分成的两段相等。

  5.直角三角形斜边的中点到三顶点距离相等。

  6.线段垂直平分线上任意一点到线段两段距离相等。

  7.角平分线上任一点到角的两边距离相等。

  8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

  9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

  10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

  11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

  12.两圆的内(外)公切线的长相等。

  13.等于同一线段的两条线段相等。

  2.证明两个角相等

  1.两全等三角形的对应角相等。

  2.同一三角形中等边对等角。

  3.等腰三角形中,底边上的中线(或高)平分顶角。

  4.两条平行线的同位角、内错角或平行四边形的对角相等。

  5.同角(或等角)的余角(或补角)相等。

  6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

  7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

  8.相似三角形的对应角相等。

  9.圆的内接四边形的外角等于内对角。

  10.等于同一角的两个角相等。

  3.证明两条直线互相垂直

  1.等腰三角形的顶角平分线或底边的中线垂直于底边。

  2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

  3.在一个三角形中,若有两个角互余,则第三个角是直角。

  4.邻补角的平分线互相垂直。

  5.一条直线垂直于平行线中的一条,则必垂直于另一条。

  6.两条直线相交成直角则两直线垂直。

  7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

  8.利用勾股定理的逆定理。

  9.利用菱形的对角线互相垂直。

  10.在圆中平分弦(或弧)的直径垂直于弦。

  11.利用半圆上的圆周角是直角。

  4.证明两直线平行

  1.垂直于同一直线的各直线平行。

  2.同位角相等,内错角相等或同旁内角互补的两直线平行。

  3.平行四边形的对边平行。

  4.三角形的中位线平行于第三边。

  5.梯形的中位线平行于两底。

  6.平行于同一直线的两直线平行。

  7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

  5.证明线段的和差倍分

  1.作两条线段的和,证明与第三条线段相等。

  2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

  3.延长短线段为其二倍,再证明它与较长的线段相等。

  4.取长线段的中点,再证其一半等于短线段。

  5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

  6.证明角的和差倍分

  1.与证明线段的和、差、倍、分思路相同。

  2.利用角平分线的定义。

  3.三角形的一个外角等于和它不相邻的两个内角的和。

  7.证明线段不等

  1.同一三角形中,大角对大边。

  2.垂线段最短。

  3.三角形两边之和大于第三边,两边之差小于第三边。

  4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

  5.同圆或等圆中,弧大弦大,弦心距小。

  8.证明两角的不等

  1.同一三角形中,大边对大角。

  2.三角形的外角大于和它不相邻的任一内角。

  3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

  4.同圆或等圆中,弧大则圆周角、圆心角大。

  9.证明比例式或等积式

  1.利用相似三角形对应线段成比例。

  2.利用内外角平分线定理。

  3.平行线截线段成比例。

  4.直角三角形中的比例中项定理即射影定理。

  5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。

  6.利用比利式或等积式化得。

  10.证明四点共圆

  1.对角互补的四边形的顶点共圆。

  2.外角等于内对角的四边形内接于圆。

  3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

  4.同斜边的直角三角形的顶点共圆。

  5.到顶点距离相等的各点共圆。

一键复制全文保存为WORD
相关文章