教学目标:
1、通过探究发现一条线段上两端要种植树问题的规律。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学重点
使学生掌握“两端都要种的植树问题”的解题方法。
教学难点
使学生掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。
教学准备
多媒体课件、小棒、直尺、卡片、探究表。
课前互动:
1、同学们,我们先来说说顺口溜,好吗?一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿。会说吗?请继续……
2、接下来,我们来说一个不一样的,有信心吗?两个手指一个隔(教师示范用手指展示出来,让学生也跟着做),三个手指两个隔,会说吗?请继续……学生说到五个手指四个隔时,引出“间隔,间隔数”的概念。(在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。)
3、随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。
教学过程
一、引入课题
生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)
二、引导探究,发现“两端要种”的规律
1、情景导入例题
①课件出示校园图片。
植树不仅能净化空气,还能美化环境。这是我们学校的新校区,绿化校园是我们的一个重要任务。植树节那天,我们全体老师参与了植树活动,(出示综合楼前的小树图片)这是我设计的,你们想知道我是怎样设计的吗?(出示操场图片)这是我们学校的操场,操场外面是一条车道。现在要在车道一边种一行树,校长想在我们班选几名优秀环境设计师完成这项任务。你们想成为优秀环境设计师吗?
出示示意图及题目:同学们在全长100米的车道一边植树,每隔5米栽一棵树(两端要种)。一共需要多少棵树苗?
②理解题意。
a.指名读题,问:要求一共要栽多少棵树,首先应该考虑到哪些问题
b.理解“两端”“一边”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这尺子的两端?一边又是什么意思?
说明:如果把这根尺子看作是这条车道,在车道的两端要种就是在车道的两头要种。一边栽就是在车道的一旁栽。
③算一算,一共需要多少棵树苗?
④反馈答案。
2、引发猜想
师:三种意见(19棵、20棵、21棵),哪种是正确的呢?
三、解决两端都种求总长度的实际问题
同学们发现规律的能力可真不错。下面我们玩个站队的游戏。
1、这一列共有几个同学?(4个同学现场站队)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?
师:这个问题与刚才的类型有什么不同?学生试做,反馈。
你运用哪个规律?(间隔长×间隔数=总长度)
2、这一列共有10个同学呢?100个同学呢?
3、这个规律,你能算算我们学校综合楼的长度吗?
出示:学校综合楼前种树,每隔4米种一棵,一共种了15棵树。从第一棵到最后一棵一共多少米?学生口答。(示意选拔设计师)
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵数用间隔数+1; 还知道通过棵数与间距求总长度。
四、回归生活,实际应用
其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
1、出示:在一条全长2千米的街道两旁安装路灯(两端也要安装),每个50米安一座,一共要安装多少座路灯?
问:这道题是不是应用植树问题的规律解决的?学生读题,练习反馈。(示意选拔设计师)
2 请同学们认真听,伸出右手,用手指记下钟敲打的次数,你发现什么?(次数比间隔数多1)
出示:广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?
学生讨论,汇报。(示意选拔设计师)
五、全课总结
1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!
小树苗,栽一栽,
两端都栽问题来,
间隔数多1是棵数,
棵数少1是间隔数,
怎样求出间隔数?
全长除以间隔长度。
2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。
教学内容:人教版义务教育课程标准实验教材四年级(下册)第117---118 页例1 。
教学目标:
1 。 通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题 的规律。
2 。 使学生经历和体验“复杂问题简单化”的解题策略和方法。
3 。 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
一、 谈话引入,明确课题
同学们,很高兴认识你们,握握手吧。其实我们的双手不仅能传达友谊,而且还与数学有着紧密的联系呢。(伸开五指)这是几?生:5
师:每个手指之间还有什么?生:空……
师:在数学上,也叫间隔。五个手指几个空?4 个呢?三个呢?
师:今天我们就来学习与间隔有关的植树问题。
二、 引导探究,发现“两端要种”的规律
1 。 创设情境,提出问题。
①课件出示图片。
介绍:这是新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?
出示题目:这条公路全长1000 米,每隔5 米种一棵树(两端要种)。一共需要多少棵树苗?
②理解题意。
a. 指名读题,从题中你了解到了哪些信息?
b. 理解“两端”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。
③算一算,一共需要多少棵树苗?
④反馈答案。
方法一:1000 ÷5=200 (棵)
方法二:1000 ÷5=200 (棵) 200 +2=202 (棵)
方法三:1000 ÷5=200 (棵) 200 +1=201 (棵)
师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000 米,数一数,是不是就能知道到底谁的答案是正确的了呢?
2、 简单验证,发现规律。
①画图实际种一种。
课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5 米再种一棵,再隔5 米再种一棵,再隔5 米再种一棵,照这样一棵一棵的种下去……
师:大家看,已经种了多少米?(45 米)这么长时间才种了45 米,一共要种多少米?(1000 米)要一棵一棵一棵一直种到1000 米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
师:老师也有同感,一棵一棵种到1000 米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000 米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?
②画一画,简单验证,发现规律。
a. 先种15 米,还是每隔5 米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3 段 4 棵)
b. 跟上面一样,再种25 米看一看,这次你又分了几段,种了几棵?(板书:5 段 6 棵)
c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书: 2 段 3 棵;7 段 8 棵;10 段 11 棵。)
d. 你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树= 段数+1 )
③应用规律,解决问题。
a. 课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
1000 ÷5=200 这里的200 指什么?
200 +1=201 为什么还要+1 ?
师:这个“秘方”好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
b. 解决实际问题
运动会上,在笔直的跑道的一侧插彩旗,每隔10 米插一面(两端要插)。这条跑道长100 米,一共要插多少面彩旗?( 学生独立完成。)
问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。你还知道生活中那些问题也是这样的。
三、 回归生活,实际应用
1 。 一根木头长8 米,每2 米锯一段。一共要锯几次?(学生独立完成。)
8 ÷2=4 (段)
4 —1=3 (次)
问:为什么要—1 ?这相当于今天学习的植树问题中的那种情况?
2 。 我们身边类似的数学问题。
①看,这一列共有几个同学?(4 个)如果每相邻两个同学的距离是1 米,从第1 个同学到最后一个同学的距离是多少米?如果这一列共有10 个同学呢?100 个同学呢?
②这一列还是4 个同学,如果每相邻两个同学之间的距离是2 米,从第一个同学到最后一个同学的距离是多少米呢?
3 。在一条路的一侧种树,每隔6 米种一棵,一共种了41 棵树。从第1 棵树到最后一棵树的距离是多少米?
五、 全课总结
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。
【教学背景】“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。
【教学内容】数学广角(一):两端都栽、只栽一端、两端都不栽的植树问题,教材第117至119页例1、例2及相应的“做一做”。
【教学目标】
知识与技能:通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。培养学生观察能力、操作能力以及与他人合作的能力。
过程与方法:主要让学生通过观察、操作、交流等活动探索新知。
情感、态度与价值观:在解决问题的过程中,感受数学与现实生活的密切联系。
【教学重、难点】引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。
【教学准备】课件、
一、创设情境,揭示课题。
1、教师出示几幅有关北方沙尘暴的图片,引出植树的话题。
学生看完视频和照片说一说有什么感受?
治理沙尘暴最有效的办法是植树造林。你们看,我们学校的学生家长和老师,都积极投身到植树造林的活动中。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题。这节课我们就来研究——植树中的数学问题。(板书课题:植树中的数学问题)
【设计意图:通过播放沙尘暴视频及照片,让学生深刻体验到数学问题来源于生活,激发学生的学习兴趣,及时渗透环保教育】
二、引导探究,发现规律。
(出示情境)为了绿化校园,学校要在一条全长20米的小路一边种树。每隔5米植一棵。想一想,要植多少棵树?(学生自由读题)
(1)理解什么是每隔5米植一棵?下一棵怎么栽?
(2)介绍什么是一个间隔?学生指一指每一个间隔。
(3)教师出示学具分析题,学生可以借助学具摆一摆再列算式算一算。(学生小组合作动手操作)
【设计意图:把课本中的例1在100米长的路上种树,改为在20米长的路上种树。这样降低了探究的难度,便于学生观察、思考。同时通过情境图和开放性的提问,为下一环节的探究作好准备。】
①组织反馈交流
师:你给大家介绍一下你是怎么想的?(学生可能只出现只植两端)教师及时引导在我们实际植树活动中会遇到什么情况?
可能会遇到建筑物,遇到建筑物怎么了?植不了树了,可能会在哪些地方遇到建筑物?看来不仅有这一种植法,还有其他可能,请同学们再动手摆一摆算一算。(学生继续操作)
②学生汇报其他两种植法。
学生说一说自己的方法,在哪里遇到建筑物,植了几棵树?
③比较三种植法有什么不同?(强调在20米的小路一边间隔是5米植树只有这三种情况)并板书:两端都植、只植一段、两端都不植。
【设计意图:本环节先通过想象提问,为学生如何去探究起到提示作用。接着采取较开放的形式,自主确定每棵之间长度,通过对每一种方案动手摆一摆,列式计算,初步感知每种方案的计算方法。再接着让学生观察每一种方案,使学生从中得出,虽然确定的每棵之间长度不同,而计算方法是相同的。最后教师又让学生想象、观察,针对实际背景的不同,应选择相应的种树方案。整个环节在教师的积极引领下,充分突出了学生的主动参与,使学生经历了在操作中思考,在观察中比较,在交流中评价概括。】
(4)理解三种不同的植法中为什么都有20÷5=4这个算式?(学生说一说并上来指一指4在哪里?)
20÷5=4原来都是在算有几个间隔数。强调虽然植法不同但他们的间隔数却都相等,都有这样的4个间隔。
【设计意图:学生通过数形结合理解在植树问题中,求出间隔数非常关键。】
(5)理解4个间隔加1为什么等于5棵树?介绍一一对应的数学思想。
学生先想一想,再一起来看一看。
重点强调:1棵树对于1个间隔,1棵树对于1个间隔,4棵树就对应了4个间隔,最后1棵树没有对应的间隔就多了1棵树,所以是4棵树加1棵树等于5棵树。
找一学生再来说一说,同桌两人说一说。
(6)学生独立尝试借助一一对应的数学思想解决另外两种植法。
【设计意图:让学生体会一一对应的思想,并深入去理解其他两种植法中也蕴含的一一对应思想,把一一对应的思想与植树规律结合在一起,得出的规律就有水到渠成的效果很好地突破难点。】
小结:刚才我们在理解这几个算式时用到了一个重要的数学思想,叫做一一对应,一一对应的数学思想可以使复杂的数学问题变得非常简单。
(7)寻找三种不同的植法棵数与间隔数之间的关系。
观察这三种不同的植法,植的棵树和间隔数之间有这样的关系?你可以看图来想一想也可以借助算式来思考。同桌两人商量商量。
学生汇报,教师板书。
小结:通过刚才的学习我们知道了有这三种不同的。植法,但他们的间隔数都相等,看来在植树问题中求出间隔数非常重要,我们还知道了他们棵数与间隔数之间的关系,分别是两端都植是棵树等于间隔数加1,只植一端是棵树等于间隔数,两端都不植是棵树等于间隔数减1。你们学会了吗?老师来考考你。
【设计意图:新知结束后带着学生一起回顾所学的知识,如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。】
精讲精练:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都要栽)。一共要栽多少棵?学生独立完成。
【教材分析】
本册的“数学广角”主要是渗透有关植树问题的方法,通过现实生活中的一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用这些规律来解决生活中的一些简单实际问题。
在本节课里,学生第一次接触到“植树问题”。解决植树问题的思想方法是实际生活中应用比较广泛的“复杂问题简单化”的数学方法。让学生能够理解植树问题中两端都栽的情况下数量之间的关系,并能解决生活中的一些简单实际问题。教学中,要引导学生通过观察、猜测、实验、推理等活动,初步体会植树问题的数学思想方法,感受数学的魅力。同时让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。
【学情分析】
“植树问题”原本属于经典的奥数教学内容,新课程教材把它放到了 4 年级下册的 “ 数学广角 ” 中让所有的学生学习,说明这一教学内容本身具有很高的数学思维含量和很强的探究空间,既需要教师本身的有效引领,也需要学生的自主探究。从学生的思维特点看, 3 、 4 年级的学生仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题的过程中,逐步发现隐含于不同情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。
【教学目标】
1、 通过探究发现一条线段上两端都植树问题的规律;
2、 使学生经历和体验 “ 复杂问题简单化 ” 的解题策略和方法;
3、 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力 。
【重点难点】
在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。通过教学让学生理解 “ 两端都种 ” 情况下棵数和间隔数之间的规律,并利用规律来解决生活中的实际问题。
【 教学策略 】
采用自主探究式学习模式,即学生利用学具尝试动手“ 种树” ——探究发现规律——应用规律实践,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法内涵。
【教学过程】
一、课前交流,创设情境
(播放树木图片)
1、 同学们,看到了什么?有什么感受?
2、 刚刚我们仿佛走进了绿色的世界,真是让人陶醉!这都是植树造林带给我们的好处,上到国家领导人,下到中小学生,都经常参加植树活动(课件:图片),其实,植树中还有很多有趣的数学问题,这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)
二、共同探究,发现规律
1、 绿化小学四年级的同学在植树中就遇到了一些问题,我们先来看看一班的(课件 出示:小路全长100 米,现要在一边种一行树,每隔5 米种一棵(两端都种)。一共需要多少棵树苗? )
(1 )理解信息
师:你认为哪些信息重要(关键词刷红)
师:你怎样理解“两端都种”和“ 每隔5 米 ”
师:两棵树之间的空,我们也叫做间隔(课件),你和我之间有没有间隔,有几个?请你起立,咱们三个之间有几个间隔?
(2 )引发猜想。
师:现在大家就试着做一做吧!
(生试做,指名板演)
师:我们请这几位同学分别说说他们是怎么想的
师:这几种做法的相同点是什么?不同点是什么?
师:100 ÷5 得到的20 到底求的是间隔数还是棵树呢?像这种两端种树的问题,棵树和间隔数之间究竟有什么关系呢?(课件出示)我们进行一次模拟植树活动怎么样?
(3 )实验探究
师:可是身边没有树怎么办呢
(用笔、用火柴等)
师:你们真的都很有创意,遇到难解决的问题时,都能想到用身边简单的事物做例子来研究,值得表扬,请看活动要求(出示:活动要求:请选择自己喜欢的方法动手试一试,也可以和同伴们共同研究,思考、交流:你把什么当成了树?种了几棵?有几个间隔?发现棵数和间隔数之间有什么关系?),谁来读读(学生读要求),明确要求了吗?开始吧!
(小组合作,教师巡视,找出典型验证方法)
(4 )发现规律
师:看来,大家都研究的差不多了,谁愿意和大家交流一下这几个问题?(边汇报边板演棵数和间隔数)
师:同学们,我们来看这组实验数据,谁能用一句话概括你的发现
师:刚刚我们通过这几种不同的实验活动,都得到了一个共同的结论,就是两端种树时,棵数比间隔数多1 ,用关系式表示是——棵数等于——间隔数+1 (贴图并板书),间隔数等于——(棵数-1 ),10 个间隔几棵树?100 个间隔几棵树?100 棵树有几个间隔呢?
师:那为什么棵数会比间隔数多1 呢
师小结:其实这几位同学用到的是数学中很重要的一种思想,“一一对应”(板书)我们来看,(指板书)一棵树,后面对应一个间隔,一棵树,后面对应一个间隔,最后一棵树后面没有对应的间隔(画弧线),所以,不论有几个间隔,棵数总比间隔数多一。
(5 )应用规律
师:应用这个规律,我们来看哪个答案是正确的(第一个)
师:先用——100 ÷5=20 ,求出——间隔数,再用——20+1=21 ,求出——棵数(相应板书)那做错的同学错在哪了呢?
(6 )梳理方法。
师小结:问题解决了,现在让我们一起梳理一下刚才的学习过程,首先对问题进行大胆地——猜想,再通过——实验,对猜想进行——验证,然后得出科学的——结论,最后应用结论去解决问题(板书:猜想——实验——验证——结论——应用)。这也为我们以后研究问题提供了一些好的方法和思路。你们能用刚刚学到的知识帮助二班和三班解决问题吗?
三、逆向练习,加深理解
出示:
1、 四年二班在一条直路的一边植树,计划每隔5 米种一棵,需要种21 棵树( 两端都种 ) ,这条直路长多少米?
2、 四年三班在全长100 米的直路一边植树,计划等距离种21 棵树( 两端都种) ,相邻两棵树间隔多少米?
自己读读题,然后解答
(逐个讲评)
四、联系生活,拓展提升
师:刚刚我们解决了几个关于植树的问题,其实生活中还有很多与植树问题类似的现象,想一想,有哪些?
(锯木头 摆花(东西) 站队上楼梯安路灯等)
师评价:看来你们都有一双善于发现的眼睛,老师也找到了一些,请看(课件出示图片,说清与植树问题的联系)
师:联系我们都找到了,你们想实际解决一下吗
出示:
注意:请自由选择两道题解决,有余力的同学也可以全做。遇到问题可以举例子试试,也可以和同伴共同解决。
1、 安装路灯
在全长2000 米的街道两旁安装路灯(两端都装),每隔50 米安装一座。一共安装多少座路灯?
2、 排队问题
早操时排队,每隔2 米排一人,一排有22 人。这排队伍是多少米?
3、 上楼梯问题
我们班教室在三楼,我们每天从一层到三层一共要走48 个台阶,每层有多少个台阶?
4、 敲钟问题广场上的大钟5 时敲响5 下,8 秒敲完。12 时敲12 下,需要多长时间?
师:先读读注意事项,然后解答
(生解答,指名板演)
师:谁来说说你解决的。是什么问题?(自选汇报)
师总结:同学们,通过本节课的学习,我们能够解决直路上两端种树以及与之相类似的一些问题,可是四班和五班却遇到了两种不同的情况(课件),他们会遇到什么问题呢?这两种情况下,棵数和<>间隔数之间又有什么关系呢? 我们下节课再来研究!
【板书设计】
植树问题
两端都种棵数= 间隔数+1
教学目标:
1、认识棵数,知道什么是间隔数、。
2、理解在线段上植树(两端都栽)的情况中“棵树=间隔数+1”的关系。
3、能将植树问题推广到生活中的其他问题,学会通过画线段图来分析题意。
教学重点:
探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题
教学难点:
灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题
导学指要:
1、通过五指初步感知棵数与间隔数之间的关系,理解间隔、间隔数、间距的含义。
2、通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。
3、学习植树问题在生活中的运用。
教具:课件一套学具9套自学提示卡一张
预设教学流程:
一、创设情境生成学习目标
1、教学“间隔”定义
师:我们班在各方面都十分优秀,俗话说的好:耳听为虚、眼见为实,今天让来听课的老师也看看我们班的风采好吗?
生:好
师生问好
师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝,动脑去思考:手与我们这堂数学课有什么关系呢?手上有哪些数学问题呢?好,现在我们就去探讨。
师:请你伸出你的右手,观察你有几根手指?几个手指缝?它们存在什么样的关系呢?
生:……………………
师:减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?
生:……
师:再减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?
生:……
师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?
生:……手指比手指缝多1,手指缝比手指少1。
师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。
板书:间隔数
2、在生活中找间隔
师:和你的同桌说说:什么是间隔数?
生:……
师:我们再来体验,请一排的前三名同学站起来,这一排同学有多少个间隔?
生:……………。
师:请这一排的前四名同学站起来,用你们的手指告诉老师,这一组同学的间隔数是多少?
生:……………
师:今天将利用数学知识来解决“植树问题”。
板书课题:植树问题
二、探究规律实现目标
1、多媒体出示学校操场
A师:这里是哪里?
学校打算在100米的跑道上植树,来美化我们的学校。可不是随便种的哦,学校可是有要求的。
出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、
师:读一读,在题中你读到哪些信息?谁来说一说?
生:……………………
师:全长100米表示什么?每隔5米栽一棵表示什么意思?一边表示什么?
师:什么是两端都要栽?
生:……………………。.
(此环节要全方位理解题意)
师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽
师:题目都理解了,请大家动笔尝试算一算,一共需要多少棵树苗?
B生动笔算
师:谁来说说你是怎样列式的?
生:……。.
板书:100÷5=2020+1=21(棵)
100÷5=2020+2=22(棵)
100÷5=2020+1=21(棵)
21x2=42棵
师:学校可犯糊涂了,有这么多种结果,到底该买多少棵呢?接下来我们来验证下吧
请同学们利用画一画,数一数,算一算,到底该买多少棵树苗?
C学生小组合作,教师巡视,并有目的的选取学生
D在实物投影上展示学生的作品
学生展示并板演
用画线段的方法解决的棵数与间隔数的关系
反馈黑板上的题目,注意利用错误资源教师提问:100÷5=20求的是什么?为什么还要加1呢?
2、再次课件演示得出结论
那你们获得的结论是什么呢?在两端都栽的情况下棵数与间隔数之间有什么关系呢?
棵数=间隔数+1
师小结:
你们真了不起,你们发现了植树问题中非常重要的一个规律棵数=间隔数+1
3、应用规律解决问题
师:应用这个规律,我们来解决在一条全长100米的小路一边植树,每隔4米栽一棵,(两端都栽)一共需要多少棵树苗?
在一条全长1000米的小路一边植树,每隔5米栽一棵,(两端都栽)一共需要多少棵树苗?
生:……………
师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?
教学目标:
1、通过探究发现一条线段上两端都种、只种一端、两端不种三种情况植树问题的规律。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。
教学重、难点:
发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。
教学过程:
一、创设情境——培养意识
1、师:同学们好!一起来看两组画面。
(给学生播放荒漠化严重的和绿化优美的两组图片。)
师:看了这两组画面,你更喜欢哪一种呢?
师:怎样才能拥有这样美丽的环境呢?
生:植树。
师:植树造林,保护环境,让我们拥有一个充满鸟语花香的绿色花园是我们每个人都应尽的义务!
师:说到植树,大家知道吗?在我们数学王国里,植树可是有一定的学问的,这节课我们就来探讨“植树问题”。——板题
2、出示教学目标
3、师:见过路边种树吗?一般情况下,每两棵树间距离怎样呢?(相等)一般情况下路边植树每两棵树之间的距离都是相等的,我们也可以叫做等距离植树。
师:在路的一边等距离地植树会有几种情况呢?大家想不想亲手种种看?
二、动手种树——探讨规律
1、动手“种”树
师:大家先看老师为大家准备的材料……(师介绍)
出示操作要求:在路的一边,等距离植树,种完后小组里交流看看有几种情况?
学生动手植树,师巡视。
2、交流方案
小组上台展示自己组的种树方案。
两端都种
两端不种
只种一端
3、仔细观察,每棵树之间都有间隔,那么植树的棵数跟间隔数之间有什么联系?
生仔细观察,得出猜想: 两端都种 棵数=间隔数+1
两端不种 棵数=间隔数-1
只种一端 棵数=间隔数
三、验证规律
1、师:通过仔细观察,我们得出了自己的猜想。但是,每一种猜想在没有验证之前,也只能是一种猜想,我们只有通过验证,才能让猜想成为科学,对于我们刚才总结出的规律也必须通过验证才能得出正确结论。下面,让我们一起动手来验证我们的猜想。
2、完成验证表格。
师出示:这是一张验证表格,就请大家在小组内共同合作,一起探究,并展示你们组总结出的规律。(出示验证事项)
3、小组合作探究。
4、展示。
分三种情况汇报。
5、梳理规律
师:同学们,在一条路的一边植树的三种规律我们都找出来了,我们一起来研究一下,它们之间有没有什么关系?
相同点:都与间隔数有关
不同点:两端都种要用间隔数+1;只种一端就等于间隔数;两端不种就要用间隔数-1
师:这三种情况是不同的,我们在解决问题时,要注意具体情况具体分析。
四、解决问题
师:知道在路的一边植树有三种情况,对于下面的信息,你会提出什么样的数学问题呢?
1、处理信息
问题情境:这是实验小学刚建好的一条校道(配图),看到这光秃秃的校道你会想到什么呢?
生:种树!
出示信息:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵
师:根据这些信息你会提什么数学问题呢?
生:一共可以种多少棵树?
得不完整例题:
实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵, ,一共需要多少棵树苗?
师:看着这道题,谁有话想说吗?
生1:两端都种
得完整例题:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?
师:受他的启发,还能提出什么样的问题?
生2:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?
生3:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?
师:三种情况大家都想到了。大家再看看这条校道,你认为采取哪种方案更合适一些呢?
生:两端都种
2、抽取问题
出示例题:(配图片)
实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?
师:愿意帮学校算算吗?
3、学生试解。
4、汇报交流。
生汇报,师:能说说你的解题思路吗?
师:刚才我们从小的数据入手,探讨出规律,然后再用规律来解决数据大的问题。这种思路正是数学上常用的“以小见大”。
师:大家学会了这种方法吗?我们再来考验考验自己的掌握情况好不好?
5、探讨只种一端
师:如果学校想在这路的末尾建一座供师生休息用的小亭子,那又应该选用哪一种植树方案更合理?
生:只种一端。
(实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?)
学生试解。
6、探讨两端不种
师:我们再接再厉,学校后来还要在这条校道的另一端筑一个墙报,请大家想想,应采用哪种方案更合适呢?
生:两端不种。
(实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?)
学生试解。
五、小结方法——提升认识
1、探讨方法
师:大家能通过自己的努力把这么一道新的问题解决,我们应该感到高兴!但是老师认为还有更重要的方法更需我们去总结!
师:大家再回头看看,我们是怎样一步一步把植树问题给解决的?
(动手操作——提出猜想——画图验证——得出规律——解决问题)
2、阅读课本
(1)阅读例1
师:今天我们学习的就是课本117页开始的数学广角,请大家打开书本。
师:课本上的同学们遇到了什么问题,他们又是采取什么样的办法来解决的?
生:画图,找规律。
师:真是好方法!大家掌握了吗?
师:他们遇到的问题正确答案应是多少呢? (21)
(2)阅读例2
师:阅读118页例2,看看课本中的孩子又遇到了什么问题,你能帮他们解决吗?
生完成,交流。
六、拓展练习
1、听说大家聪明能干,又乐于助人市政规划局的同志找来了,他呀,想请大家帮个忙,(出示119页做一做1)
2、生尝试解答。
3、全班交流。
七、全课小结
师:通过今天的学习,你有什么收获呢?
生畅谈自己的收获。
师小结:收获方法比收获知识更重要,祝贺大家!
板书设计:
植树问题
两端都种 棵数=间隔数+1
两端不种 棵数=间隔数-1
只种一端 棵数=间隔数