中学数学说课稿【优秀6篇】

说课稿是教师与学生情感交流的桥梁,它能够让学生了解教师的教学意图,感受教师的关怀和爱护,增强学生对学习的主动性和积极性。这里给大家分享一些关于初中数学说课稿一等奖,供大家参考学习。读书之法,在循序而渐进,熟读而精思,下面是小编为家人们整编的中学数学说课稿【优秀6篇】,欢迎阅读,希望对大家有所启发。

初中数学说课稿 篇1

今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”这四个部分来汇报对本节课的设计。

一、 教学内容

“平行线”是我们在日常生活中都经常接触到的。它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行” 。

因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。

在七年级的学习中,学生已经初步接触了简单的说理过程。因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。

二、 教学目标

基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。由此确定本节课的教学目标为:

1、 让学生通过直观认识,掌握平行线的判定方法;

2、 会根据判定方法进行简单的推理并能写出简单的说理过程;

3、 运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。

同时确定本节课的重难点:

重点:在观察实验的基础上进行判定方法的概括与推导.

难点:方法的归纳、提炼;

例2教学中的辅助线的添加。

三、教学方法及手段

布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。”所以根据本节课的教学内容特点,同时基于八年级学生的形象思维,遵循 “教为主导,学为主体,练为主线”的教育思想,从实例出发,让学生亲历观察、发现、探究、归纳等一系列过程,再现了知识的发生、发现及发展的过程。在新知识学习和例题的教学中,教师始终以引导者的形象出现并在适当的时候对学生适当的启发。所以在本节课中我采取的教学方法是启发式引导发现法.让学生合作、探究,主动发现.

教学手段上,一开始借用道具“纸带”引出问题,从而围绕着这一问题进行探索,教师边启发引导,边巡视,随时收集与评定学生的学习情况,进行反馈调节。同时使用多媒体辅助教学,可以形象生动地直观展示教学内容,不但提高了学习效率和质量,而且容易加法学生的学习兴趣和积极性。

四、教学过程

1、 复习旧知,承前启后

如图,直线L1与直线L2、L3相交,指出图中所有的同位角、内错角、同旁内角;

在学生回答完问题后继续提问:如果∠1=∠5,直线L1与L3又有何位置关系?

此问题旨在复习原来的知识,从而为新知识作好铺垫。

2、 创设情境、合作探究

问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮。因此在复习好旧的知识后马上提出新问题。

问题:如何判断一条纸带的边沿是否平行?

要求:

1、小组合作(每组4人,确定组长、纪录员、汇报员等进行明确分工);

2、对工具使用不做限制。

对于要求一进行明确的分工是希望可以照顾各个层面的学生,希望每个学生都能得到参与,而在最后当汇报员进行总结的时候,可以由组内其他成员进行补充。而在要求二中明确了对工具不做任何限制,这样可以激发学生的创造性和积极性,从而会使我们的方法多样。

最后可以对学生的方法进行罗列,问其根据,由学生自己进行讲解。总结学生的各种方法,可能会有以下几种情况:一推二画三折。

⑴。推平行线法。经过下边沿的一点作上边沿的平行线,若所画平行线与下边沿重合,则可判断上下两边沿平行;

其实我们知道这种画法的依据就是利用同位角相等,两直线平行。而除这样的推法外学生也会想到用画同位角的方法来说明。就比如第2种情况中。

⑵将纸带画在练习本上,作一条直线相交于两边,如图所示,用量角器量出∠1,∠2,利用同位角相等,来判定纸带上下边缘平行;

而有些学生可能想到直接在纸带上画,直接在纸带上作一条相交于两边缘的直线,因为纸带局限了作图,因而可以利用的只有∠2、∠3、∠4。用量角器度量学生会发现∠3=∠2,∠4+∠2=1800。

⑶折的方法。

经过这样一系列的演示和归纳,学生就对平行线的新的两种判定方法有了自己直观的认识。这时候可以请学生模仿平行线判定方法一的形式请学生给出总结。应该说这时候学生的情绪会很高,通过自己的动手发现了平行线判定的其他方法,此时教师可结合多媒体利用动态再来演示这两种判定方法。同时在黑板上给出板书。在多媒体课件里可以是一句完整的表达,而在板书时,为更易于学生理解和掌握,只简单地记为:

内错角相等,两条直线平行。

同旁内角互补,两直线平行。

其实在教材中对这两种判定方法的编排里,它是先从“内错角相等,两直线平行”进行教学,然后再经过例题教学让学生对这种方法巩固加深,然后再从开始的引题里让学生寻找同旁内角的关系,从而引出“同旁内角互补,两直线平行”这种判定方法。而我在对这节课的处理上则是直接利用“纸带问题”引导学生先得到这两种方法,而后再是对这两种方法进行巩固、应用。

3、 初步应用,熟悉新知

“学数学而不练,犹如入宝山而空返。“适当的巩固性、应用性练习是学习新知识、巩固新知识所必不可少的。为了促进学生对新知识的理解和掌握,给出以下两个小练习,意在对平行线的两种判定方法的理解。

找一找,说一说:

1、课本练习:如图,直线a,b被直线l所截,

⑴若∠1=750,∠2=750 ,则a与b平行吗?根据什么?

⑵若∠2=750,∠3=1050 ,则a与b平行吗?根据什么?

2、根据下列条件,找出图中的平行线,并说明理由:

图(1)∠1=1210,∠2=1200,∠3=1200;

图(2)∠1=1200,∠2=600,∠3=620。

对这2个练习可直接由学生抢答,并说明理由,因为题目简单又由这样抢答的方式,学生感到意犹未尽,此时马上推出范例教学。

例2、如图∠C+∠A=∠AEC,判断AB和CD是否平行?并说明理由。

确定例题是难点,基于以下两点考虑:

1、 根据已有的条件与图形,无法解决问题时,要添加辅助线。

2、 将推理过程由口述转化为书面表达形式,这也会让学生感到一定困难。

因此在本例题的教学中要充分体现教师引导者的地位,启发学生思考当遇到要我们说明两直线平行的时候,应该要从已知和图形中寻找什么?这时学生会总结学过的三种判定方法,然后再要求学生在本题中是否存在满足这三种判定方法的条件?当找不到解决问题的方法时,引导学生是否可以在没有防碍题目的前提下对图形做适当的改变,然后自然而然的引出作辅助线。

4.练习反馈,巩固新知。

说一说,写一写:

1、 如图,∠1=∠2=∠3。填空:

⑴ ∵ ∠1=∠2( )

∴ ∥ ( )

⑵ ∵∠2=∠3( )

∴ ∥ ( )

2、如图,已知直线L1、L2被直线L3所截,∠1+∠2=1800。请说明L1与L2平行的理由。

练习的安排遵循了由浅入深的原则,让学生在观察后再动手。

说明:练习1由学生个别回答,其他学生更正,教师作注意点补充;练习2由3名学生板演,其余学生同练,对于个别基础差的学生在巡视时可做提示,最后集体批阅。

因为我所面向的是乡镇中学的学生,学生总体的素养相比较市直属学校的学生来说是有一定的距离的,所以我在对练习的选取上都是按照教材上的课内练习,我想教材之所以为教材总是有他一定的科学性和可取性。当然对于好的学校或者是学有余力的学生,可以给学生做适当的提高,数学原本就是来源于生活,而又高于生活,反过来它又可以帮我们解决很多的实际问题。因此在编排题目的时候我也特意找了关于这方面的题目,让学生在一种实际的背景中去应用所学的知识。那么对这两道题我们可以根据自己授课的情况随机来定,课内有时间,可以让同桌进行讨论,共同完成;假使时间不够的话可以留给学生在课后思索,但是不作强制要求。

附加题:

⑴小明和小刚分别在河两岸,每人手中各有两根表杠和一个侧角仪,他们应该怎样判断两岸是否平行(设河岸是两条直线)?你能帮他们想想办法吗?

⑵一个合格的弯行管道,当 ∠C=600,∠B= 时,才能在经历两次拐弯后保持平行(AB∥CD)。请写出理由。

5.知识整理,归纳小结

用问题的形式引发学生思索本节课的收获

提醒学生在这两方面思考:

⑴在实验、合作、探究的过程中我们的收获……

⑵如果要判定两直线平行时,我们可以联想到……

6.布置作业 :

结合教材上的课外练习与浙教版作业本,选择适当的作业题,避免重复。

初中数学说课稿范文 篇2

一、教材分析:

本节课主要是在学生学习了有理数概念基础上,从标有刻度温度计表示温度高低这一事例出发,引出数轴画法和用数轴上点表示数方法,初步向学生渗透数形结合数学思想,以使学生借助直观图形来理解有理数有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识重要工具,还是以后学好不等式解法、函数图象及其性质等内容必要基础知识。

二、教学目标:

根据新课标要求及七年级学生认知水平我特制定本节课教学目标如下:

1、使学生理解数轴三要素,会画数轴。

2、能将已知有理数在数轴上表示出来,能说出数轴上已知点所表示有理数,理解所有有理数都可以用数轴上点表示

3、向学生渗透数形结合数学思想,让学生知道数学于实践,培养学生对数学学习兴趣。

三、教学重难点确定:

正确理解数轴概念和有理数在数轴上表示方法是本节课教学重点,建立有理数与数轴上点对应关系(数与形结合)是本节课教学难点。

四、学情分析:

⑴知识掌握上,七年级学生刚刚学习有理数中正负数,对正负数概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统去讲述。

⑵学生学习本节课知识障碍。学生对数轴概念和数轴三要素,学生不易理解,容易造成画图中掉三落四现象,所以教学中教师应予以简单明白、深入浅出分析。

⑶由于七年级学生理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动形象,引发学生兴趣,使他们注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习主动性。

⑷心理上,学生对数学课兴趣,老师应抓住这有利因素,引导学生认识到数学课科学性,学好数学有利于其他学科学习以及学科知识渗透性。

五、教学策略:

由于七年级学生理解能力和思维特征,他们往往需要依赖直观具体形象图形年龄特点,以及七年级学生刚刚学习有理数中正负数,对正负数概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”研讨式学习方法。教学中积极利用板书和练习中图形,向学生提供更多活动机会和空间,使学生在动脑、动手、动口过程中获得充足体验和发展,从而培养学生数形结合思想。

为充分发挥学生主体性和教师主导辅助作用,教学过程中设计了七个教学环节:

(一)、温故知新,激发情趣

(二)、得出定义,揭示内涵

(三)、手脑并用,深入理解

(四)、启发诱导,初步运用

(五)、反馈矫正,注重参与

(六)、归纳小结,强化思想

(七)、布置作业,引导预习

六、教学程序设计:

(一)、温故知新,激发情趣:

首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉带刻度度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

(1)零上5°C用5表示。

(2)零下15°C用-15表示。

(3)0°C用0表示。

然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上点表示正数、负数和0呢?答案是肯定,从而引出课题:数轴。结合实例使学生以轻松愉快心情进入了本节课学习,也使学生体会到数学于实践,同时对新知识学习有了期待,为顺利完成教学任务作了思想上准备。

(二)、得出定义,揭示内涵:

教师设问:到底什么是数轴?如何画数轴呢?

(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美感觉。)

(2)标正方向(这里说明我们在水平位置数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线一部分,因此标上箭头指明正方向,并表示无限延伸。)

(3)选取单位长度,标数(这里说明任选适当长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度长短,可根据实际情况而定,但同一单位长度所表示量要相同。)

由于画数轴是本节课教学重点,教师板书这三个步骤,给学生以示范。

画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”(通过教师亲切语言启发学生,以培养师生间默契)

通过讨论由师生共同得到数轴定义:规定了原点、正方向和单位长度直线叫做数轴。

至此,我们将一个具体事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论认识过程。

(三)、手脑并用,深入理解:

1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?

A、B、C三个图形从数轴三要素出发,D和F是学生可能出现错误,给学生足够观察、思考时间然后展开充分讨论,教师参与到学生讨论之中去接触学生,认识学生,关注学生。

2、为进一步强化概念,在对数轴有了正确认识基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

学生在画数轴时教师巡视并予以个别指导,关注学生个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生发展;并强调:原点、正方向和单位长度是数轴三要素,画数轴时这三要素缺一不可。

我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念理解;一个是通过动手操作加深对概念理解。

(四)、启发诱导,初步运用:

有了数轴以后,所有有理数都可以表示在数轴上,那么反过来,数轴上点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数学习埋下伏笔,这里不再展开。

安排课本23页例1,利用黑板上例题图形让学生来操作,教师提出要求:

1、要把点标在线上

2、要把数标在点上方

通过学生实际操作,可以加深对数轴理解,进一步掌握用数轴上点表示数方法,同时激发学生学习兴趣,调动学生积极性,从而使学生真正成为教学主体。

当然,此题还可以再说出几个有理数让学生去标点,好让更多学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上点表示,从而加深对数形结合思想理解。

(五)、反馈矫正,注重参与:

为巩固本节教学重点让学生独立完成:

1、课本23页练习1、2

2、课本23页3题(给全体学生以示范性让一个同学板书)为向学生进一步渗透数形结合思想让学生讨论:

3、数轴上点P与表示有理数3点A距离是2,

(1)试确定点P表示有理数;

(2)将A向右移动2个单位到B点,点B表示有理数是多少?

(3)再由B点向左移动9个单位到C点,则C点表示有理数是多少?

先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识基础上达到灵活运用,形成一定能力。

(六)、归纳小结,强化思想:

根据学生特点,师生共同小结:

1、为了巩固本节课教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同有理数?

让学生牢固掌握一个有理数只对应数轴上一个点,并能说出数轴上已知点所表示有理数。

(七)、布置作业,引导预习:

为面向全体学生,安排如下:

1、全体学生必做课本25页1、2、3

2、最后布置一个思考题:

与温度计类似,数轴上两个不同点所表示两个有理数大小关系如何?

(来引导学生养成预习学习习惯)

七、板书设计:(略)

总之,在教学过程中,我始终注意发挥学生主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样教学实践取得了良好教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎好教师。

以上是我对本节课设想,不足之处请老师们多多批评、指正,谢谢!

初中数学说课稿 篇3

尊敬的各位领导、评委、老师。你们好!

我有机会能参加这次青年教师优质课比赛,倍感荣幸。

今天我说课的课题北师大版八年级下册第三章第一节分式的基本性质。我将从教材分析、学情分析、教学目标、教学重点与难点、教法学法、教学流程这六部分来说:

一、教材的地位和作用

分式是继整式之后对代数式的进一步研究。与整式一样,分式也是表示具体情境中的数量关系的一种工具,是解决实际问题的常用模型之一。

分式的基本性质是北师大版八年级下册第三章第一节分式的重点内容之一。它是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的约分、通分以及分式的四则混合运算的基础,学生掌握本节内容是学好本章及以后学习方程、函数的问题的关键,所以本节内容要引起学生足够的重视。

二、学情分析

学生在小学已经掌握了分数的基本性质,在此基础上,引导学生们采用类比的方法由数到式的转化(在原有知识的基础上加以延伸),学习分式的基本性质。

三、教学目标

根据《新课标》对本教材的要求及自身结构和内容分析,结合八年级学生的认知结构及其心理特征,我确定了本节的教学目标:

1、通过类比、探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。

2、理解并熟练掌握分式的基本性质,灵活运用“性质”进行分式的变形。

3、通过研究、解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。

四、教学重点、难点

从教学目标出发理解掌握分式的基本性质是学习整个分式运算的关键,从学情分析出发,学生在化简分式时容易忽略了分母的存在,因此确定本节课的教学重、难点:

重点:理解并掌握分式的基本性质及应用。

难点:灵活运用分式的基本性质,进行分式的化简、变形。

五、教法与学法

为了讲清教材的重、难点,使学生能够达到本节内容设定的教学目标,我再从教法和学法上谈谈:

1、教法

《新课标》指出数学教学是数学活动的教学,是师生积极参与、交往互动、共同发展的过程。学生是学习的主人,教师是学习的组织者,引导者,合作者。

根据课标的要求及对教材和目标分析,本节内容主要采用问题引导探索的教学方法。学生在教师营造的环境里,经历从数的基本性质到分式基本性质的探索过程,让学生在观察、类比、猜想、尝试的思维活动中,发现性质、理解性质,并通过应用此性质进行不同形式的练习,让学生得到更深刻的体会,实现教学目标。逐步掌握分式的基本性质 。

2、学法

不同的教法,就有与之对应的不同学法。采用问题引导探究的教学法,就是让学生在具体情境中发现问题,思考问题,经过小组讨论分析、解决问题。其目的是让学生在掌握了基本知识的基础上,经历观察,归纳,类比和猜测的数学思维的过程。

六、教学流程

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。从游戏导入、问题探究、初试一把、紧紧相接、紧紧相拥、齐花开放、迸出火花。

初中数学说课稿 篇4

一、教材分析:

反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二、教学目标分析

根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:1。掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2。在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3。通过学习培养学生积极参与和勇于探索的精神。

三、教学重点难点分析

本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

难点则是如何抓住特征准确画出反比例函数的图象。

为了突出重点、突破难点。我设计并制作了能动态演示函数图象的。多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

四、教学方法

鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法

和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨

初中数学说课稿 篇5

一、说教材:

“圆的认识”是“人教版”六年级上册第四单元的内容,它是几何初步知识内容,既是一节起始课,也是后继学习“圆的周长”、“圆的面积”、“圆柱”、“圆锥”的基础。

《圆的认识》是在学生学习了直线图形的认识和面积计算,以及对圆有了初步的感性认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形和直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的认识,不仅能加深学生对周围事物的理解,提高解决简单实际问题的能力,也为今后学习圆的周长、圆的面积、圆柱、圆锥等知识打好基础。

二、说教学目标:

结合本节课的内容特点,本人确定了以下的教学目标:

1、知识与技能:通过画一画、折一折、量一量等活动,观察、体会圆的。特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。了解、掌握多种画圆的方法,并初步学会用圆规画圆

2、过程与方法:通过想象与验证、观察与分析、动手操作、合作交流等活动,使学生体会到圆的各点分布均匀性和广泛的对称性,同时获得思维的进一步发展与提升。

3、情感态度价值观:结合具体的情境,体验数学与日常生活的紧密联系,并能用圆的知识来解释生活中的简单现象。

三、说重点、难点:

教学重点:理解和掌握圆的特征,学会用圆规画圆的方法。

教学难点:理解“圆上”的概念,归纳圆的特征。

教学准备:

学生:剪刀、白纸若干张、彩笔、圆规、直尺、圆形物体一个

教师:课件、圆规、直尺、圆形纸片

四、说教法、学法:

教法:在本节课中要注重学生的学习行为方式的改变、课程资源的开发利用。从欣赏圆、发现圆开始,深深吸引学生,课堂教学中,要注意调动学生的多种感官参与学习,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。教给学生学法:情境中欣赏圆的魅力——合作中探究圆的特征——介绍中体验圆的数学文化——实践中感受圆的数学价值,大胆放手,把一切探究的机会交给学生。学生不仅学得轻松活泼,而且较好地体现了新课程的教学理念。

五、说教学过程

对本节课的教学,我精心设计了二个主要环节。

(一)、创设情境、导入新课

我们以前都和哪些平面图形做了朋友?这些图形都是用什么线围成的?简单说出这些图形的特征。

(二)、突出主体、探究新知

1、初步感知圆

首先我会让学生举举生活中的例子。“日常生活中哪些物体的形状是圆的?”学生可能会说出:硬币、光碟、路标、钟面、车轮等,这些物体的形状都是圆的。让学生初步感知圆,培养学生的空间想象力。同时,我会出示一些生活中的圆形图片,让学生感受到圆就在我们身边。

接着,我会出示的两组图形,第一组是长方形、正方形、三角形、平行四边形、梯形,第二组就是圆形,通过对比,可以清楚地看到,第一组图形是由线段首尾连接所围成的,而圆是由曲线所围成的,形成正确表象——圆是一种平面上的曲线图形。

通过课件展示圆的画面及各部分的名称,同时根据课件图片让学生分析圆上,圆内,圆外和圆心各指什么?我在适时讲解加深学生的理解

2、认识圆的各部分名称和特征

活动一:小组合作探究

(1)以四人为一小组,一起动手折一折、量一量、比一比、画一画,你发现了什么?并在小组内交流。

(2)把你们的发现,准备与大家一起交流分享。

(1)找圆心

首先让学生把事先准备好的圆形纸对折后打开,用笔和直尺把折痕画出来,并在圆形纸的其他位置上重复上面的折纸活动二、三次。操作后,问:“你发现了什么?”学生亲手操作后,发现所有的折痕都会相交于一点。这些折痕的交点,正好在圆的正中心,我们数学上把这一点叫作圆心,用字母“O”来表示。(设计意图:通过学生的直观操作,使学生的学习过程“动作化”,调动学生多种感官参与学习,并有意设置一些认知冲突,让学生积极主动地参与知识的形成过程。)

(2)认识半径、直径

连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。

通过圆心并且两端都在圆上的线段叫直径,直径一般用字母d表示。在这里因为有半径的知识做基础,我会尝试放手,让学生小组合作探讨直径的知识,

活动二:一起动手

1。请同学们在圆纸片上画出半径,10秒钟,看能画出多少条?直径呢?

2。请同学们用直尺量一量画出的半径有多少厘米?你发现了什么?直径呢?

3。请分四人小组讨论在同一个圆里,半径有什么特征?直径有什么特征?它们之间有什么关系?通过测量和比较,让学生理解和掌握在同一个圆里半径和直径之间的关系,让学生用含有字母的式子表示半径是直径的一半、直径是半径的2倍关系。得出d = 2r与r = d/2的字母公式,并在练习中通过填表强调了圆内半径与直径的对应关系,还要求学生在圆内一些线段中,找出半径和直径。(设计意图:合理发挥学生的主体作用,让学生动脑、动手、动口、动眼,自主探索知识的形成与发展,并及时巩固学习成果。)

口答:

3、掌握画圆方法

在教学画圆的过程中,我同样会放手让同学们大胆的动脑,动手探索不同的画圆方法。我会在课本知识的基础上在向外延伸。我会向学生提问:刚才同学们画圆都用到了什么方法和工具啊?和大家交流借鉴一下经验好吗?学生会说出不同的方法和工具。如硬币。线,笔,圆规等。此时我会装做很着急的样子向学生问:老师想画一个8厘米的圆可不可以用一元钱的硬币呢?为什么啊?生:学生会从大小不符合等方面来说明不行。此时我又会说那我要是想画一个6厘米的圆又该怎么办呢?为什么啊?

生:可能会比较困难。(我在适时从大小符合以及方便等方面慢慢导出学生说出用圆规画圆)。接下来我在小结得出画大小不同的圆,我们通常用圆规来画。并播放课件圆规确定半径的方法以及圆规画圆的方法的过程。(并得出结论用圆规画圆可以画出大小不同的圆,也可以得到我们想要的圆。再次论证得出半径越大,圆就越大,半径越小,圆就越小。

最后,我根据以上所学的内容,为学生准备了两道习题。来加深所学的知识,一是让同学们:

1、用圆规画出半径是2厘米的一个圆,并用字母O、r、d分别标出它的圆心、半径、和直径。

2、画出直径是4厘米的一个圆。

实际应用:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为10米的圆吗?我会适时加以巩固,在所学知识基础上史料连接,有关圆的知识,名言等,通过课件展示使学生体会圆所蕴涵的历史和文化积淀,激发学生学数学,用数学的激情以及在以后的数学学习中,更加用心。圆与生活又有很大的联系。通过解决生活中的实际问题,使学生感到成功的快乐。学数学,用数学,数学无处不在。

巩固练习

1、填空。

(通过这道题让学生回顾了本节课所学内容,检验了学生对所学内容的掌握情况)

2、判断,并说为什么。

(这些题进一步加深对圆的认识,并培养学生分析、推理和判断能力。)

板书设计:

圆的认识

图略

圆心O半径r直径d

d=2r或r=d/2

圆规画圆:定半径、定圆心、旋转一周

初中数学说课稿 篇6

今天我说的课题是“向量的直角坐标运算”,主要研究两类问题:

1、向量的直角坐标运算

2、培养学生的创新精神和实践能力,履行“以学生发展为本”的教育思想。

下面我从三个方面阐述这节课。

第一方面:教材分析

本节的授课内容为“向量的直角坐标运算”,选自人教版中等职业教育国家规划教材《数学》(提高版)第一册第六章第六节,我从四个方面进行教材分析。

(一)教材的地位和作用

向量的直角坐标运算是向量的重要内容,它使向量的运算完全数量化,将数与形紧密地结合起来,使得用向量的方法解决几何问题更加方便,从而极大地提高了学生利用向量知识解决实际问题的能力。

同时,这节课的教学内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要意义。

(二)教材的处理

结合教学参考书和学生的学习能力,我将“向量的直角坐标运算”安排为两课时。本节为第二课时。

根据目前学生的状况以及以往的经验,我发现,虽然这节课的内容比较简单,但由于以前教师讲解得过多,导致学生丢失了很多重要的知识。为了激发学生的学习热情,我采用复习提问的形式,师生共同得出向量线性运算的直角坐标运算法则和一个向量的坐标等于向量的终点坐标减去始点相应坐标的结论,直接切入本节课的知识点。之后,由浅入深、由低到高地设计了三个层次的问题,逐步加深学生对向量直角坐标运算的记忆和理解。

由此,我对教材的引入、例题和练习做了适当的补充和修改。

(三)教学重点和难点

根据学生现状、教学要求以及教材内容,我确立本节课的教学重点为:使学生熟练地掌握向量的直角坐标运算。

由于学生的实际情况──运用所学知识分析和解决实际问题的能力较差,我把本节课的难点定为:向量直角坐标运算的应用。

要突破这个难点,关键在于紧扣向量直角坐标运算的相关知识,去发现解决问题的方法。

(四)教学目标的分析

根据教学要求、教材的地位和作用以及学生现有的知识水平和数学能力,我把本节课的教学目标确定为以下三个方面。

1、知识教学目标

能准确表述向量线性运算的坐标运算法则;明确一个向量的坐标等于向量的终点坐标减去始点的相应坐标;掌握用向量的直角坐标运算解决平面几何问题的方法。

2、能力训练目标

培养学生观察、分析、比较、归纳的能力及创新能力;培养学生运用数形结合的方法去分析和解决问题的能力。

3、德育渗透目标

通过学习向量的直角坐标运算,实现几何与代数的完全结合,让学生明白:知识与知识之间、事物与事物之间的相互联系和相互转化;通过例题及练习的学习,培养学生的辩证思维能力,养成勤于动脑的学习习惯。

第二方面:教法与学法分析

现代教学论指出:“教学是师生的多边活动,在教师进行‘反馈—控制’的同时,每个学生也都在进行微观的‘反馈—控制’。”由于任何教学都必须通过学生自身的学习建构才有成效,故本节课采用“发现式教学法”来组织课堂教学。这样,可充分调动学生的学习积极性和能动性,突出学生的主体作用。

在教学中借助于计算机课件辅助教学。

第三方面:教学过程

共分为六个环节,具体的时间安排如下:复习提问约4分钟,导入新课约6分钟,创设问题约30分钟,小结约3分钟,布置作业约2分钟。

(一)复习提问

(1)向量在直角坐标系中坐标的定义是什么?

(2)若o为原点,则点A的坐标与向量的坐标之间的关系是什么?

(3)如果两个向量相等,那么这两个向量的坐标需满足什么条件?

课堂教学论认为:“要使教学过程最优化,首先要把所学习的知识和学生已有的信息联系起来”。通过这三个问题的复习就可以使学生在学习新的知识前,获得适当的知识积累。

(二)导入新课

在教学过程中,我提出两个问题:

问题1 已知a=a1e1+a2e2,b=b1e1+b2e2,(e1、e2为直角坐标系的基底)

1、则a,b的坐标为……。

2、求a+b,a—b,λa。

3、求a+b,a—b,λa的坐标。

问题2已知A=(x1,y1),B=(x2,y2)。

1、则,的坐标分别为……。

2、化简。

3、求的坐标。

这两个问题由师生共同练习完成。

通过师生间的相互讨论、相互启发、相互合作,达到温故知新的目的,也由低级到高级的认知顺序引出本节课的知识点,这很自然,学生比较容易接受,容易激发学生发现向量直角坐标运算规律的强烈欲望。

(三)创设问题

这是本节课的核心。根据循序渐进、由浅入深的教学原则,我设计了三个层次的问题。

第一层次:先由师生共同归纳总结由问题1、2得出的结论,培养学生观察、分析、比较、归纳的能力。

由问题1我们得到结论1:

a+b=(a1+b1,a2+b2),

a—b=(a1—b1,a2—b2),

λa=(λa1,λa2)。

用语言叙述为:

两个向量的和与差的坐标分别等于两个向量相应坐标的和与差。

数乘向量的坐标等于数乘向量相应坐标的积。

由问题2我们得到结论2:

=(x2—x1,y2—y1)。

用语言叙述为:

一个向量的坐标等于向量终点的坐标减去始点的相应坐标。

这两个结论是向量直角坐标运算的规律,为本节的知识点。为加深认识,我又安排了练习1。

练习1(口答)下列说法是否正确:

(1)已知向量a=(—2,4),b=(5,2),

则:①2a=(—4,4),2b=(5,4)。②2a=(—4,8)。

(2)已知A(2,1),B(3,8),则=(—1,—7)。

①让学生注意数乘向)●(量的坐标等于数乘向量相应坐标的积。

②提醒学生区分点的坐标和向量坐标,两者是不同的概念。

上述(2)小题让学生明确一个向量的坐标等于向量终点坐标减去始点的相应坐标,而不等于始点坐标减去终点的相应坐标。

第二层次:设计练习2、3、4。

练习2 已知如下向量a、b,求a+b,a—b,3a+4b,4a—4b的坐标。

(1)a=(—2,4),b=(5,2);

(2)a=(4,3),b=(—3,8)。

练习3 已知A(2,1),B(3,8),求。

练习4 已知(2,3),B(4,5),c(6,8)。

(1)若3=,求D点的坐标。

(2)求2—3+2。

这组练习由学生独立完成。目的是使学生进一步掌握向量的直角坐标运算和向量相等的条件,也体会到对于两个向量相加减的直角坐标运算法则可以推广到有限个向量相加减。对于练习4中的(2)让学生认识到先进行向量线性运算几何形式的化简,再进行代数运算比较好,也感受到几何与代数密不可分。

第三层次:遵循深入浅出的教学原则,我安排了例题1和练习5,这是本节课重点知识的应用。

例题1 已知平行四边形ABcD的三个顶点A、B、c的坐标分别是A(—2,1),B(—1,3),c(3,4),求顶点D的坐标。

例题1有多种解法,除了课本中给出的由向量线性运算的几何形式向代数形式转化的方法,还可以利用向量=或=列方程求解,也可以利用线段Ac、BD的中点E的向量表达式进行等量转化以求出D点的坐标。但不论哪一种解法都用到了一个很重要的数学方法──数形结合。

讲这个题时,我板书采用的是课本给出的方法,目的是引导学生熟练地转化向量线性运算的几何形式和代数形式,其他的方法则只是给予提示,给学生留出空间,开阔思路,培养学生的发散思维能力。

通过例题1让学生深刻理解向量的直角坐标运算,亲身体会“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事非”(华罗庚语)。从而提高学生利用数形结合的方法解决实际问题的能力。

练习5已知A(—2,1),B(1,3),求线段AB中点m和三等分点P、Q的坐标。

练习5是例题1的进一步深入,学生以小组讨论的形式,采用多种方法解题,教师以巡视的方式进行个别引导,并让有不同解法的学生上黑板演示,让学生动手实践、自主探索、合作交流,围绕中心各抒己见,把思路方法弄清。

通过这个练习,学生可以更熟练地掌握向量直角坐标运算的应用,并使集体智慧个人化,书本知识灵活化,同时培养学生独立思考的能力和团结协作的精神。

(四)小结

为了让学生将获得的知识进一步条理化、系统化,同时培养学生归纳总结的能力及练习后进行再认识的能力,引导学生对本节课进行总结:

向量的直角坐标运算使向量运算完全数量化,将数与形紧密地结合起来,这样很多的几何问题就可以通过“数形结合”的方法转化为大家熟悉的数量的运算。

(五)布置作业

为了让学生进一步巩固本节课内容,提高自觉学习的能力,我布置作业如下:

1、课本第186页:练习A1(1)、2(1);练习B 1、2。

2、思考题:3a与a的坐标有什么关系?位置有什么特点?

A组的题用来巩固向量的直角坐标运算,B组的题则让学生进一步掌握向量直角坐标运算的应用,思考题又为下一节课的内容埋下伏笔。

(六)板书设计

在黑板中上方书写完课题后,将版面分为四部分,从上而下,自左向右,按授课顺序书写授课内容,达到清晰、条理、有序的目的。板书内容如下:

课题:6、2、2 向量的直角坐标运算

问题1练习1 例1 练习5

结论1练习2

问题2练习3

结论2练习4

本节的说课内容到此结束,谢谢大家。

一键复制全文保存为WORD
相关文章