八年级数学说课稿和课件(精选4篇)

作为一位无私奉献的人民教师,时常需要用到说课稿,通过说课稿可以很好地改正讲课缺点。那么说课稿应该怎么写才合适呢?以下是人见人爱的小编分享的八年级数学说课稿和课件(精选4篇),希望能够给予您一些参考与帮助。

初中数学说课稿 篇1

写说课稿一定要有正确的思路,下面一起去看看小编为你整理的初中数学万能说课稿吧,希望对大家有帮助!

一、说教材

用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。

二、说学情

任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。

三、说教学目标

【知识与技能】

掌握应用因式分解的方法,会正确求一元二次方程的解。

【过程与方法】

通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

【情感态度与价值观】

通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

四、说教学重难点

【重点】

运用因式分解法求解一元二次方程。

【难点】

发现与理解分解因式的方法。

五、说教法、学法

本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比---探究-----归纳”的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。

同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。

六、说教学过程

(一)导入新课

因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲望,顺利地进入新课。

(二)探索新知

问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

学生小组讨论,探究后,展示三种做法。

问题:小颖用的什么法?——公式法

小明的解法对吗?为什么?——违背了等式的性质,x可能是零。

小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]

师引导学生得出结论:

如果a·b=0,那么a=0或b=0

(如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)

“或”有下列三层含义

①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0

问题3:

(1)什么样的一元二次方程可以用因式分解法来解?

(2)用因式分解法解一元二次方程,其关键是什么?

(3)用因式分解法解一元二次方程的理论依据是什么?

(4)用因式分解法解一元二方程,必须要先化成一般形式吗?

因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。

这是我会提示学生:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”

(三)巩固提高

在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习,练习如下:

用分解因式法解下列方程吗?

在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。同时也起到了分层次教学的作用。

(四)小结作业

最后是小结环节,通过本节课的学习你学到了什么,有什么收获。整个过程让学生自己进行,以培养学生的归纳、概括的能力。考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类,以便同时兼顾到学有困难和学有余力的学生。

七、说板书设计

我的板书本着清晰、简洁、直观的原则,呈现知识的内在联系,板书如下:

初中数学说课稿 篇2

今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线 》。这节课的主要内容包括:对顶角,邻补角的定义,对顶角的性质。下面,我将从六个方面对该节课的教学设计进行说明:

一、教材分析

(一)地位、作用

该节课是在学生们已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生们的识图能力,激发学生们的学习兴趣具有推动作用,所以该节课具有很重要的地位和作用。

(二)、教学目标

根据学生们已有的知识基础,依据《教学大纲》的要求,确定该节课的教学目标为:

1、知识与技能

(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。

(2)掌握“对顶角相等的性质”。

(3)理解对顶角相等的说理过程。

2、过程与方法

经历质疑,猜想,归纳等数学活动,培养学生们的观察,转化,说理能力和数学语言规范表达能力。

3、情感态度和价值观

通过小组讨论,培养合作精神,让学生们在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。

(三)重点,难点

根据学生们已有的知识基础,依据教学大纲的要求,确定该节课的重难点为:

重点:邻补角和对顶角的概念及对顶角相等的性质。

难点:写出规范的推理过程和对对顶角相等的探索。

二、教学方法

在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生们观察、比较、归纳、总结,使学生们经历了从具体到抽象,从感性上升到理性的认识过程。

三、学法指导

让学生们学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。

四、学情分析

七年级的孩子思维活跃,模仿能力强。同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能力不强,推理能力还需进一步培养。

五、教学过程

(一)创设情景,引入新课

多媒体显示立交桥、防盗网。

设问:从这些图片得出什么几何图形?学生们会指出:相交线。从而引出了课题:相交线。让学生们借助已有的几何知识从现实生活中发现数学问题,建立直观、形象的数学模型。

(二)新课探讨

1、对顶角、邻补角的位置关系。

让学生们用已备好的剪刀剪纸片、向他们提出以下问题:

问题1:一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?

学生们观察,很容易把剪刀的构造想象成两条相交直线。在剪刀剪纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系。

通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉。

问题2:任意两条相交的直线在形成的4个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?

学生们以事先分好的小组(四人为一组)为单位,通过观察,思考,讨论,并填好表格中的内容。接着我加以适当启发引导,让他们归纳出对顶角,邻补角的概念以及对顶角和邻补角的判定方法。然后让学生们依据这些判定方法找出图中的对顶角和邻补角。有些同学可能概括得不太好,我将肯定他们探讨的热情和发言的勇气。同时,帮助他们进行纠正。让他们感觉到老师对他们不抛弃,不放弃,建立和谐民主的教学氛围。这样,提出问题,引导学生们分析问题,以至解决问题,体现了新型的课改精神。

2、对顶角的大小关系

学生们根据已有的知识可以肯定邻补角互补,也可以猜到对顶角相等,但不是很肯定。为了让学生们的猜想得于肯定,我的做法如下:

(1)我演示教具(自己制作),也给学生们操做。

(2)让学生们通过量角器测量。

(3)让学生们把画好的对顶角剪下来,进行翻折。

(4)引导学生们根据同角的补角相等来推导对顶角相等的性质。

引导他们写出推理过程后,我在黑板上板出规范的过程。学生们通过观察,比较,找出自己写的和老师写的有哪些异同点。

学生们的自主学习应接受老师的指导与引导,这也体现了新课程理念下新型师生关系,即教师是合作者,引导者。通过学生们的思考、培养学生们的逻辑思维能力以及严谨的治学态度,使学生们初步养成言之有据的习惯。

(三)让学生们举出生活中对顶角相等的例子

学生们可以通过合作性交流、思考、发表见解。

让学生们举出生活中对顶角相等的例子,使学生们进一步理解对顶角的性质,体会生活中的对顶角,让他们感受到数学来源于生活,也应用于生活。打破了他们一直误认为数学是一门枯燥无味的学科这一观念。增加了他们学习数学的兴趣。

(四)例题解析

例 如图,直线a, b相交, ∠1=40°,求∠2, ∠3, ∠4的度数。

引导学生们先寻找已知角和未知角之间的位置关系,再寻找已知角和未知角之间的数量关系,此题难度不大,让一位学生们在黑板上板演。其他同学一起来批改。

(五)习题反馈

为了再次强化对顶角、邻补角的概念及对顶角性质的理解,我适当增加些练习,对于习题,循序渐进提高难度,让不同层次的学生们都得于提高,对于趣味题和拓展题,学生们通过思考,讨论,寻找规律,让他们进一步感觉“知识来源于实践”,同时学生们的思路得于拓展。

(六)、课堂小结

1、这节课学了哪些概念和性质?

2、你还有什么疑惑?

3、谈谈你对该节课的收获。

将该节课所学知识进行回顾和梳理,进一步培养他们归纳,总结能力。

(七)布置作业

我布置了必做题和选做题,为学生们提供个性化发展的空间,及时了解学生们的学习效果,使学生们养成独立思考,反思学习过程的习惯。

六、板书设计(略)

初中数学说课稿 篇3

尊敬的各位评委老师:

大家好!我叫XX,来自,下面我从教学理念、教材分析、教法、学法、教学流程、板书设计六个方面进行阐述:

一、教学设计理念:

1、教师的责任重不在“教”,而是在于“导”:倡导学生主动参与,勇于探索;引导学生由“学会”向“会学”这个更高层次过渡;

2、每个学生都带着自己的经验背景,带着自己独特的感受,来到课堂进行交流,因此,应尊重每位学生的个性化理解,关注他们的合作,让思维在撞击中生出“火花”;

3、课堂不仅是带着学生学知识,同时更是活动、是体验,要学会营造一个激励探索和理解的气氛,启发学生善于质疑,从而培养学生的问题意识,引导学生学会分享彼此的思想和结果,指导和培养学生形成良好的学习习惯。

4、关注学生的终身发展趋势,让课程不仅带给学生知识的增进、能力的提高,更培养他们良好的学习习惯,让他们学有所得,有所收获,进而享受到成功的快乐

二、教材分析:

1、教材的地位和作用:

《等腰三角形》第2课时,选自人教版八年级下册第12章第3节,等腰三角形的判定是初中几何的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题,特点之一是它揭示了同一个三角形的边、角关系;特点之二它与等腰三角形性质互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的几何学习提供了重要的证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材承上启下、至关重要。

2、教学目标的确定:

依据《数学课程标准》本段教材特点和学生已有的知识基础,我确定如下目标:

知识技能:理解掌握等腰三角形的判定。

数学思考:通过观察、挖掘、归纳、证明等腰三角形的判定定理,发展学生的合情推理能力和演绎推理能力,发展学生证明用文字表达几何命题的能力。

解决问题:渗透转化、类比、数形结合的数学思想和方法;通过图形变化,开拓学生思路,培养学生的视图能力和发散思维能力。

情感态度:引导学生对图形的观察、发现、激发学生的好奇心和求知欲望,并在主动参与数学活动中获得成功体验。

3、重点:等腰三角形的判定定理及运用。

4、难点:证明定理时辅助线的作法。

三、教学方法及教学环境:

教学有法,教无定法,贵在得法。新课程理念强调我们的课程不仅是文本课程,更是体验课程,它不再是知识的载体,而是教师和学生共同探究新知识的过程;使教学成为是一种对话、交往,一种沟通,是合作、共建,是以教促学、互教互学。基于以上考虑,结合本段教材特点和八年级学生的年龄特点,我选择的教法是启发、引导探究、练习相结合的方法,整堂课以教师为主导,学生为主体,教师引导学生自主探究、合作交流并参与学生的学习,给学生创造充分从事数学活动的机会,提供揭示数学规律的环境,培养学生积极进取,大胆参与的数学创新意识,帮助他们认识自我、建立信心,在获得知识的同时真正体会到成功的乐趣。

教学环境的选择:为弥补传统几何知识教学在直观性和动态感等方面的不足,为了更有效地吸引学生的注意力,激发学生的兴趣,启迪学生思维,增加课堂容量,提高教学效率,本堂课选择制作多媒体课件。

四、学法指导:

1、通过本节课的学习,使学生领会认识事物的一般方法:由具体到抽象,由一般到特殊,由感性到理性,从而形成良好的思维品质和严谨的思维习惯;通过图形变化,开拓学生的思路,培养学生的发散思维能力,并能更好地用所学知识解决实际问题。

2、通过等腰三角形判定定理的学习,向学生渗透转化、类比、数形结合的数学思想和方法。

五、教学过程的设计:

1、复习提问,巩固旧知

复习等腰三角形的性质。

指明学生口头回答:等边对等角,三线合一。(配PPT说明)

(设计理念:通过学生回忆等腰三角形的性质,巩固所学知识。为新授课打基础,同时为等腰三角形判定的证明做铺垫,从而分散难点。)

2、结合实际,情境导入

思考:

如图(1),位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?

(设计理念:此环节1分钟,由书本实例引入,创设情境,激发兴趣,通过学生观察、思考,产生悬念,使学生从生活走进数学,自然地渗透数学来源于实践的思想。鼓励学生大胆猜想,发现结论。)

以上实例,教师引导学生尝试采用数形结合,由学生口头表述,把实际问题转换为数学模型,从而引出下一个环节:

3、合作探究,完成证明

已知:如图(2),在△ABC中,若∠B =∠C,

求证:AB=AC。(PPT配合)

分析:引导学生类比等腰三角形性质定理的证明思路,

添加辅助线,构造以AB、AC为边的两个三角形,并

证明它们相等。(利用证三角形全等是目前证明两条线

段相等的基本思路。)

从三种情况分析:

(1)作∠BAC的平分线;

(2)作BC边上的高;

(3)作BC边上的中线。

【学法指导:作为全课难点,我安排8分钟让学生分成小组,充分讨论,予以解决】

【预期成果:学生讨论后,自己发现:在性质定理的证明过程中,三种辅助线作法均可;而这里只能过点A作AD⊥BC于D或作AD平分∠BAC,交BC于点D,即用(1)和(2),但是不能作BC边上的中线,因为“SSA”不能直接作为三角形全等的判定,也无法利用其它辅助手段来证明。】

(设计理念:学生通过讨论探索,产生思维碰撞,获得对数学最深切的感受,体会成功的乐趣,发展思维能力,从而培养学生良好的思维品质。进而完成本课难点的突破。)

4、及时反馈,强化认识

等腰三角形的性质与判定的区别:

性质:等边等角

判定:等角等边

【学法指导:组织学生采用比较、归纳的方法,让学生充分认识:等腰三角形的性质与判定的条件、结论的互逆性。从而更好地巩固对两则定理的理解、区别与识记,】

(设计理念:学生通过自主比较发现,真正实现知识点的“再创造”过程,体会学习生成、触类旁通之乐。)

5、例题分析,应用引申

①例题分析:

求证:如果三角形一个外角的平分线平行于三角形的一边,

那么这个三角形是等腰三角形。

设问:这是一个命题的证明,一般要有哪些步骤?

已知:如图(3),∠CAE是△ ABC的外角,∠1=∠2,AD∥BC。

求证:AB=AC

分析:要证AB=AC,

关键证∠B=∠C

由已知∠1=∠2;AD∥BC。

证明:……

题目说明:此题为书本P52页例2

【学法指导:学生在课堂练习纸动笔尝试:数形结合演练。前面等腰三角形性质定理的学习中学生已有证明文字命题的经验,所以这里要求学生自己根据题意,分清题设、结论,画图并写出已知和求证。此环节重点培养学生动手能力。】

【教师参与:在这里注意纠正学生不规范叙述。本题主要考察角平分线的性质和判定“等角对等边”的使用。提醒学生遇到外角考虑外角特性:①它与相邻内角互补;②它等于与它不相邻的两个内角的和。】

(设计理念:发现性学习,完全忽略接受性学习的课堂教学,忽视教师对知识的系统讲授,这样会在培养学生学习的主动性和创造性的同时降低了学生的学习效率,破坏学生对系统知识的学习和掌握。这里我适时点拨启发,给学生以规范,通过证明培养学生良好的思维品质。)

②小试牛刀

已知:如图(4),AD∥BC,BD平分∠ABC.

求证:AB=AD.

【学法指导:学生上黑板板演,全班交流评议。】

③拓展延伸(PPT呈现)

已知:如图(5),BI平分∠ABC,CI平分∠ACB,DE经过点I,且DE∥BC。

(1)若AB=AC,则图中有几个等腰三角形?

(2)若AB≠AC,则线段DE与BD、CE之间有何数量关系?并说明理由。

(3)已知AB=5,AC =6,求△ADE的周长。

(设计理念:为拓展学生思维,我根据学生所学,将10年一道中考题改编、组合。通过图形变化,培养学生思维的灵活性和广阔性。题目设计,力求有思考价值,有梯度,层层深入,步步递进,既反映学生对基础知识的掌握情况、基本技能的形成情况,又能激发学生的学习兴趣,使学生的心理达到一种“欲罢不能”的状态,更好地使学生运用所学数学知识解决数学问题,富有成就感。)

【学法教法:师生互动:教师引领,学生参与,以自主、合作、探究等方法,重点培养学生听、说、写、评综合能力。此环节10分钟,力争完成教学重点二。】

6、互动演练,巩固成果

(设计灵感:我根据中央电视台《非常6+1》设计了砸金蛋互动演练。八年级学生思维活跃,容易被新鲜事物所吸引,有强烈的好奇心、求知欲,教学中这一环节,很好地激发了学生的参与热情,将知识在娱乐中,在潜移默化间被学生所理解、所掌握,最终轻松实现本堂课教学重点。)

互动游戏:6个金蛋你可以任选一个,如果出现“恭喜你”的字样,你将直接过关;否则将有考验你的数学问题,当然你可以自己作答,也可以求助你的同学。其中有5道数学问题和一个“恭喜你”过关字样,5个问题如下:

(1)如图(6),∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1、∠2的度

数,并说明图中有哪些等腰三角形.

(2)如图(7),把一张矩形的纸沿对角线折叠.重合部分是一个等腰三角形吗?为什么?

(3)如图(8),AC和BD相交于点O,且AB∥DC,OA=OB,求证:OC=OD.

(4)已知在直角坐标系中,点A(3,0),B(0,2),在x轴上找一点C,

使△ ABC为等腰三角形,这样的点能找几个?你能说出你的画法吗?

(5)如图(9),标杆AB高5m,为了将它固定,需要由它的中

点C向地面上与点B距离相等的D,E两点拉两条绳子,使得点

D、B、E在一条直线上。量得DE=4m,绳子CD和CE要多长?

【学生活动:全班分为六组,推荐代表上台参加游戏,最后评比奖励。】

(题目说明:5道题目\\,充分考虑了难、中、易结合,游戏激趣的同时,使得全班学生能人人参与,人人有所收获,体验到成功带来的快乐。)

7、课堂小结,布置作业

小结:等腰三角形的判定;等腰三角形的性质与判定的区别

作业:课本P56:第5、 7题

(设计理念:教师组织学生小结,对小结过程及时调控,学生回忆所学,语言归纳,理清知识,抓住重点,使本节课知识系统化,并体会数学思想方法。通过布置作业,给学生以自由发展的空间,满足多样化的学习需求。)

六、板书设计:

八年级数学说课稿 篇4

各位领导、老师们:

大家好!

今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。

一、教材分析

1、教材的地位与作用:

本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教学目标:

知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)

3、教学重点与难点:

重点:等腰三角形的性质的探索和应用。

难点:等腰三角形性质的推理证明。

二、教法设计:

教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。

三、学法设计:

在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。

四、教学过程:

根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:

1、创设情景:

首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗? (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。

2、动手操作,大胆猜想:

①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)

③分组讨论。(看哪一组气氛最活跃,结论又对又多。)

然后小组代表发言,交流讨论结果。

④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?

(教师引导学生进行总结归纳得出性质1,2)

性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)

(设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)

3、证明猜想,形成定理:

你能证明等腰三角形的性质吗?

对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:

(1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。

(2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)

(3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。

问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;

问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。

问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:

(1)作顶角∠BAC的平分线,

(2)作底边BC的中线,

(3)作底边BC的高。以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2。

(设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。)

(4)你能用符号语言表示性质1和性质2吗?

(设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。——

4、性质的应用:

例一:在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

变式练习:

1、在等腰中,∠A=50°,则 ∠B=___,∠C=___

2、在等腰中,∠A=100°,则∠B=___,∠C=___

设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如

例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)①当∠A=50°为顶角时,则∠B=65°,∠C=65°。②当∠A=50°为底角时,则∠B=50°,∠C=80°;或∠B=80°,∠C=50°。变式2①当∠A=100°为顶角时,则∠B=40°,∠C=40°。②当∠A=100°为底角时,则△ABC不存在。由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°)。

例二:在等腰△ABC中,AB=5,AC=6,则△ABC的周长=_______

变式练习:在等腰△ABC中,AB=5,AC=12,则 △ABC的周长=______

(设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。如例二,①当AB=5为腰时,则三边为5,5,6;②当AB=5为底时,则三边为6,6,5。变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。

例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

(例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)

例四:

在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)

5、巩固提高

(1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。

(2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。

(3)课本本章数学活动三“等腰三角形中相等的线段”

设计意图:

(1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。

(2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。

6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。

7、布置作业:

P55练习1、2、3题

P56习题1、4、6,(选做7,8题)

一键复制全文保存为WORD
相关文章