六年级上册数学《分数除法》教案(优秀10篇)

作为一位杰出的老师,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。我们应该怎么写教案呢?

分数除法教案 1

教学内容:

教科书第44-45页例6和相应的“试一试”、“练一练”,练习八第1-5题。

教学目标:

1、结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除,会用分数表示有关单位换算的结果,能列式解决求一个数是另一个数的几分之几的简单实际问题

2、在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

教学重点:

探索并理解分数与除法的关系,会用分数表示两个整数相除。

教学难点:

会用分数表示有关单位换算的结果能列式解决求一个数是另一个数的几分之几的简单实际问题。

教学对策:

引导同学探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解决。

教学准备:

教学光盘;3个同样的圆形纸片。

教学过程:

一、导入

1、出示情境图:把4块饼平均分给4个小朋友。

2、你能提出哪些问题?

二、新课

1、教学例6

(1)把刚才出现的题目改为:把3块饼平均分给4个小朋友。

你能提出什么问题?怎样列式?

把3块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?

每人分得的不满1块,结果可以用分数表示。

那么,可以用怎样的分数表示3÷4的商呢?请大家拿出3张同样的圆形纸片,把它们看作3块饼,依照题目分一分,看结果是多少?

(2)同学操作,了解同学是怎样分和怎样想的。组织交流,你是怎么分的?

(3)小结:把3块饼平均分给4个小朋友,每人分得4/3块。完成板书。

把题目改为:把3块饼平均分给5个小朋友,每人能分得多少块?

3除以5,商是多少?怎样用分数表示?小组交流

(4)总结归纳

请大家观察上面两个等式,你发现分数与除法有什么关系?

被除数÷除数=被除数/除数

假如用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b

讨论:b可以是0吗?(在除法中,0不能作除数;分数中的分母,相当于除法中的除数,所以分母不能是0。)

2、教学试一试。同学尝试填空。你是怎样想的?

把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?(指出:两个数相除,得不到整数商时,可以用分数表示。)

3、做练一练的第1题

同学填写后,引导比较:上下两行题目有什么不同?

4、做练一练第2题

同学独立填写,要求说说填写时是怎样想的。

三、练习

1、练习八第1题

让同学在小组里说说,再指名口答。

2、练习八第2题

同学独立填写,交流。

3、练习八第3题

同学看图填写后,可让同学说一说是怎样想的。

4、练习八第4题

同学填写后,提问:这道题中的两个问题有什么不同?

5、练习八第5题

让同学联系分数的意义填空,再引导同学根据分数与除法的关系列算式,并写出得数。

四、总结:

今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?

教学反思

探索是同学亲自经历和体验的学习过程,也就是让同学用自身理解的方式实现数学的“再发明”,在这其中教师的指导作用是潜在和深远的。本课中,我让同学充沛动手分圆片,让他们在自身的尝试、探究、猜测、考虑中,不时发生问题、解决问题、再生成新的问题,给同学留与了操作的空间,因此同学对分数与除法的关系理解得比较透彻。

授后小记

在教学例题是我是让同学先列式表示题目所提出的问题的,接着让同学通过折圆片得到用分数表示的结果,进而使同学明确3÷4=3/4(块);3÷5=3/5(块)。同学通过比较这两个算式与分数结果,感受到除法与分数的关系。

分数除法教案 2

单元目标:

1、理解并掌握分数除法的计算方法,会进行分数除法计算。

2、会解答已知一个数的几分之几是多少求这个数的实际问题。

3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

4、能运用比的知识解决有关的实际问题。

单元重点:

理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题

单元难点:

理解分数除法的算理,列方程解答分数除法问题

第一课时:分数除法的意义和分数除以整数

教学目标:

1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × ×

× ×6 ×

二、新知探究

(一)、教学例1

1、课件出示自学提纲:

(1)出示插图及乘法应用题,学生列式计算。

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

2、学生自学后小组间交流

3、全班汇报:

100×3=300(克)

A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

×3= (千克) ÷3= (千克) ÷3=3(盒)

4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

分数除法的意义与整数除法相同,都是已知两个因数的积与其

中一个因数,求另个一个因数。都是乘法的逆运算。

(二)、巩固分数除法意义的练习:P28“做一做”

(三)、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

A、 ÷2= =,每份就是2个。

B、 ÷2= × =,每份就是的。

(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、当堂测评(课件出示)

1、计算

÷3 ÷3 ÷20 ÷5 ÷10 ÷6

2、解决问题

(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

(2)、正方形的周长是4/5米,它的边长是多少米?

学生独立完成。

教师讲评,小组间批阅。

四、课堂总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

教学后记

第二课时:一个数除以分数

教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教具准备:多媒体课件、实物投影。

教学过程:

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4 ×3 ×2 ×6

÷4 ÷3 ÷2 ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求小时走了多少千米,也就是求2个,算式:2×

再求3个小时走了多少千米,算式:2× ×3

(5)综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算÷,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、P31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

教学后记

第三课时:练习课

第四课时:分数混合运算

教学目标:

1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

教学重点:确定运算顺序再进行计算。

教学难点:明确混合运算的顺序。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

二、新知探究

1、教师课件出示例4

2、课件出示自学提纲:

(1)例4中的哪些条件和复习中的3相同?问题相同吗?

(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

(3)尝试说说自己的解题思路并解答。

3、学生根据提纲尝试解题。

4、全班汇报

(1)根据学生的回答,归纳出两种思路:

A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。

B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(2)说说运算顺序,再进行计算。

(1)计算1/5÷(2/3+1/5)×15

让个别学生说出运算顺序并计算题目的得数。

教师巡回指点,搜集存在问题。

教师黑板出示问题,学生上台改正,并说明理由。

(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

三、当堂测评

练习九第1、2、3题:

注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

楼楼板到地面的高度实际上只有5层楼的高度。

学生独立完成教师点评,解决疑难。

学生相互得分,评选优胜小组。

四、课堂小结

这节课有什么收获?说一说。

还有什么不懂的?提出来小组内解决。

设计意图

1、在课初始,我便从复习整数及小数的运算顺序入手,

重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

习加强计算的训练。

2、当堂测评题将学生置于提高之处,联系实际生活解决问

题,让学生体会到数学知识的广泛性和严谨性

教学后记

第五课时:练习课

已知一个数的几分之几是多少求这个数的应用题

教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:

分数除法应用题的特点及解题思路和解题方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、根据题意列出关系式。

(1)一个数的3/4等于12.

(2)男生人数的11/12等于220人。

(3)甲数的5/8是40.

(4)乙数的4/5刚好是1/6.

2、解决问题

根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?

(1)看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重× =体内水分的重量

(2)指名口头列式计算。

二、新知探究

(一)教学例1.

1、课件出示自学提纲:

(1)这一例题和复习中的题有什么不同和相同呢?想一想。

(2)有几个问题?都和哪些条件有关?

(3)读题、理解题意,并画出线段图来表示题意

(4)独立解决第一个问题。

2、全班汇报

(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重× =体内水分的重量

(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?

(1)启发学生找关键句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。

χ= 35

χ=35÷

χ=75

②算术解:35÷ =75(千克)

4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、当堂测评(课件出示)

1、根据题意列出算式,不必计算(每题15分)。

(1)一个数的2/5是40,这个数是多少?

(2)一个数的3/8是24,这个数是多少?

(3)甲数是100,占乙数的4/5,乙数是多少?

(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

2、解决问题(40分)。

某校有女生160人,正好占男生的8/9,男生有多少人?

学生独立完成,教师巡回指点,注重学困生的提高。

小组内订正、互评,做到兵强兵。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

设计意图:

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

教学后记:

六年级上册数学《分数除法》教案 3

教学目标

1、使学生明确分式的约分概念和理论依据,掌握约分方法;

2、通过与分数的约分作比较,学习分式的约分,渗透“类比”的思想方法、

教学重点和难点

重点:分式约分的方法、

难点:分式约分时分式的分子或分母中的因式的符号变化、

教学过程设计

一、导入新课

问:下面的等式中右式是怎样从左式得到的?这种变换的理论根据是什么?

答:

(1)式中的左边分式的分子与分母都除以2a2b2,得到右式,这里a≠0,b≠0

(2)式中的左边分式的分子与分母都除以(x+y),得到右式,这里(x+y)≠0、这种变换的根据是分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变、

本性质、

问:什么是分数的约分?约分的方法是什么?约分的目的是什么?

答:把一个分数化为与它相等,但是分子、分母都比较小的分数,这种运算叫做约分、对于一个分数进行约分的方法是:把分子、分母都除以它们的公约数(1除外)、约分的目的是把一个分数化为既约分数、分式的约分和分数的约分类似,下面讨论分式的约分、

二、新课

我们观察:

(1)中左式变为右式,是把左式中的分子与分母都除以2a2b2得到的,它是分式的分子与分母的公因式、

(2)中左式变为右式,是把左式中的分子与分母都除以它们的公因式(x+y)而得到的、

像(1),(2)中分式的运算就是分式的约分、即把一个分式的分子与分母的公因式约去,叫做分式的约分、

一个分式的分子与分母没有公因式时,这个分式叫做最简分式、

把一个分式进行约分的目的,是使这个分式变为最简分式、

为了把上述分式约分,应该先确定分式的分子与分母的公因式,那么分式的分子与分母的公因式是什么?

答:因为分式的分子与分母都是单项式,取分子、分母中相同因式的最低次幂和分子、分母的系数的最大公约数,把它们的积作为这个分式的分子与分母的公因式、

指出:分子或分母的系数是负数时,一般先把负号移到分式本身的前边、这就同时改变了分式本身与分子或分母的符号,所以分式的值不变、

例2约分:

分析:(1),(2)的分子、分母都是多项式,并且都能分解因式,可以先分解因式,再分别确定分子与分母的公因式、

请同学说出解题思路、

答:分式的分子、分母都是多项式,可以先分别因式分解,约分,把分式化为最简分式,再求值、

当x=45时,请同学概括分式约分的步骤、

答:

1、如果分式的分子、分母是单项式,约去分子、分母的系数的最大公约数和相同因式的最低次幂、

2、如果分式的分子与分母都是多项式时,可先把分子、分母分解因式,然后约去分子与分母的'公因式、

3、当分式的分子或分母的系数是负数时,应先把负号提到分式的前边、

请同学思考一个问题:将分式约分时,约去分式中的分子与分母的公因式,为什么分式的值不变?

答:因为所给的分式都是有意义的,也就是说,分母的值不等于零、而分式的分子与分母的公因式一定是分式的分母的一个因式,根据分式的基本性质,约分后分式的值不变、

三、课堂练习

1、约分:

2、指出下列分式运算中的错误,并把它改正、

四、小结

把一个分式的分子与分母的公因式约去,叫做分式的约分、

分式进行约分的目的是要把这个分式化为最简分式、

如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式、如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分、

分式约分中注意正确运用乘方的符号法则,如:x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3、

五、作业

1、约分:

2、约分:

3、先约分,再求值:

课堂教学设计说明

1、分式的约分和分数的约分有很多类似之处,在导入分式约分时,先充分复习分数约分的概念、方法、目的,引导学生用类比的方法学习分式的约分,从中促使学生发现新旧知识间的联系与发展,让学生在类比、概括中主动获取知识、通过讨论例题,引导学生概括分式约分的步骤、

分数除法教案 4

单元目标:

1、理解并掌握分数除法的计算方法,会进行分数除法计算。

2、会解答已知一个数的几分之几是多少求这个数的实际问题。

3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

4、能运用比的知识解决有关的实际问题。

单元重点:

理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题

单元难点:

理解分数除法的算理,列方程解答分数除法问题

第一课时:分数除法的意义和分数除以整数

教学目标:

1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × ×

× ×6 ×

二、新知探究

(一)、教学例1

1、课件出示自学提纲:

(1)出示插图及乘法应用题,学生列式计算。

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

2、学生自学后小组间交流

3、全班汇报:

100×3=300(克)

A、3盒水果糖重300克,每盒有多重?300÷3=100(克)

B、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)

×3=(千克)÷3=(千克)÷3=3(盒)

4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

分数除法的意义与整数除法相同,都是已知两个因数的积与其

中一个因数,求另个一个因数。都是乘法的逆运算。

(二)、巩固分数除法意义的练习:P28“做一做”

(三)、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

A、 ÷2= =,每份就是2个。

B、 ÷2= × =,每份就是的。

(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、当堂测评(课件出示)

1、计算

÷3 ÷3 ÷20 ÷5 ÷10 ÷6

2、解决问题

(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

(2)、正方形的周长是4/5米,它的边长是多少米?

学生独立完成。

教师讲评,小组间批阅。

四、课堂总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

教学后记

第二课时:一个数除以分数

教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教具准备:多媒体课件、实物投影。

教学过程:

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4 ×3 ×2 ×6

÷4 ÷3 ÷2 ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求小时走了多少千米,也就是求2个,算式:2×

再求3个小时走了多少千米,算式:2× ×3

(5)综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算÷,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、P31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

教学后记

第三课时:练习课

第四课时:分数混合运算

教学目标:

1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

教学重点:确定运算顺序再进行计算。

教学难点:明确混合运算的顺序。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

二、新知探究

1、教师课件出示例4

2、课件出示自学提纲:

(1)例4中的哪些条件和复习中的3相同?问题相同吗?

(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

(3)尝试说说自己的解题思路并解答。

3、学生根据提纲尝试解题。

4、全班汇报

(1)根据学生的回答,归纳出两种思路:

A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。

B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(2)说说运算顺序,再进行计算。

(1)计算1/5÷(2/3+1/5)×15

让个别学生说出运算顺序并计算题目的得数。

教师巡回指点,搜集存在问题。

教师黑板出示问题,学生上台改正,并说明理由。

(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

三、当堂测评

练习九第1、2、3题:

注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

楼楼板到地面的高度实际上只有5层楼的高度。

学生独立完成教师点评,解决疑难。

学生相互得分,评选优胜小组。

四、课堂小结

这节课有什么收获?说一说。

还有什么不懂的?提出来小组内解决。

设计意图

1、在课初始,我便从复习整数及小数的运算顺序入手,

重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

习加强计算的训练。

2、当堂测评题将学生置于提高之处,联系实际生活解决问

题,让学生体会到数学知识的广泛性和严谨性

教学后记

第五课时:练习课

已知一个数的。几分之几是多少求这个数的应用题

教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:

分数除法应用题的特点及解题思路和解题方法。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、根据题意列出关系式。

(1)一个数的3/4等于12.

(2)男生人数的11/12等于220人。

(3)甲数的5/8是40.

(4)乙数的4/5刚好是1/6.

2、解决问题

根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?

(1)看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重× =体内水分的重量

(2)指名口头列式计算。

二、新知探究

(一)教学例1.

1、课件出示自学提纲:

(1)这一例题和复习中的题有什么不同和相同呢?想一想。

(2)有几个问题?都和哪些条件有关?

(3)读题、理解题意,并画出线段图来表示题意

(4)独立解决第一个问题。

2、全班汇报

(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重× =体内水分的重量

(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。

(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)

(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?

(1)启发学生找关键句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。

χ= 35

χ=35÷

χ=75

②算术解:35÷ =75(千克)

4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、当堂测评(课件出示)

1、根据题意列出算式,不必计算(每题15分)。

(1)一个数的2/5是40,这个数是多少?

(2)一个数的3/8是24,这个数是多少?

(3)甲数是100,占乙数的4/5,乙数是多少?

(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?

2、解决问题(40分)。

某校有女生160人,正好占男生的8/9,男生有多少人?

学生独立完成,教师巡回指点,注重学困生的提高。

小组内订正、互评,做到兵强兵。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。

设计意图:

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。

《分数除法》教案 5

本单元的教学内容主要是分数除法的计算法则和用分数除法解决实际问题,

下表是内容的编排。

计算法则

分数除以整数(例1)

整数除以分数(例2、例3)

分数除以分数(例4) 练习十一

实际问题

分数除法应用题(例5)

两步计算/分数乘除混合运算(例6) 练习十二

“整理与练习”

从上面的表格里,可以看到教材在编排上有三个特点。

第一,计算内容编排成两段: 一是计算法则,二是乘除两步计算。两段之间穿插解决实际问题,留出了巩固法则、形成计算能力的时空。这是考虑到从理解法则到掌握法则需要一段过程,教学应遵循这个规律。结合解决实际问题应用计算知识,能起巩固知识、熟练技能的作用。在此基础上才能比较轻松地进行分数乘除混合运算。

第二,计算法则的教学编排细致,从分数除以整数到整数除以分数,再到分数除以分数,最后才形成包摄性强的法则。分数除法是转化成分数乘法计算的,转化的方法是乘除数的倒数,例1至例4都教学这样的转化。前两道例题在操作中开展形象思维,体会转化是合理的;后两道例题通过猜想与验证,理解转化是必然的。这样的编排循序渐进,使法则的教学不是被动接受,而是主动建构;不仅是形成知识技能,还是发展数学思考、培养解决问题策略的载体。

第三,单独编排例题教学应用题。本单元教学分数除法应用题,是在分数乘法概念的基础上列方程解答的。它与分数乘法应用题,在数量关系上有一致的地方,也有不同的地方,有许多可以比较、需要区分的内容。由于解法比较特殊以及教学内容比较多,单独编排有利于教学。

一、 在图画上分——感悟算法。

分数除以整数、整数除以分数,是分数除法中比较简单的情况。要从中初步体会,分数除法可以通过被除数乘除数的倒数进行计算。为了有利于体会,这两道例题都选择可以操作的素材。

例1呈现了4/5升果汁的图画,让学生在图中分一分,算出结果。一部分学生在直观操作中会看到4/5平均分成2份,每份是2/5,列出算式4/5÷2=2/5。“兔子”卡通的思考和这部分学生的想法一致,它的“4个1/5平均分成2份”清楚地解释了4÷2/5的意思。另一部分学生在直观情境的支持下,从4/5平均分成2份推理,得出就是求4/5的1/2。“小鸟”卡通把这样的思考用式子的恒等变换表示出来,就是4/5÷2=4/5×1/2。教学例1要在鼓励独立探索和解决问题方法多样的前提下,突出“小鸟”卡通的方法。这是学生第一次感悟分数除法和分数乘法的联系,对继续教学分数除法有定向作用。

第55页的“试一试”计算4/5÷3。表面上看,似乎只是把例1算式的除数“2”改成“3”,其实它的计算中有很丰富的思考内容。如果采用4÷3/5这种方法,商的分子不是整数,无论是表示还是化简都很麻烦。如果采用4/5×1/3这种方法,能很快得到结果。挖掘“试一试”里的思考内容,教学要注意三点:一是让学生算一算,在教材上通过填空得到结果;二是让学生想一想,这里用了“兔子”卡通的方法还是“小鸟”的方法,为什么不用另一种算法;三是让学生说一说,计算分数除以整数的策略与过程,初步学会算法。

例2教学整数除以分数,这里的除数是1/2、1/3、1/4,这些分子都是1的分数。选择这样的除数,便于通过操作解决实际问题,感受整数除以分数的计算方法。这道例题的教学分三步进行:第一步在“4个橙子可以分给几人”的问题情境中引出整数除以分数的算式。先是每人吃2个橙子,求可以分给几人的算式是4÷2。再是每人吃1/2个、1/3个、1/4个,求可以分给几人的数量关系与4÷2相同,通过类比推理,列出4÷1/2、4÷1/3、4÷1/4等算式。第二步看图计算4÷1/2,初步感悟算法。由于每人吃1/2个橙子,因此教材把4个橙子按1/2个、1/2个……画,一共画了8个1/2。“小猴”卡通看图知道可以分给8人,即4÷1/2=8(人)。“小鸟”卡通看图时想: 1个橙子可以分给2人,4个橙子可以分给4×2=8(人)。4÷1/2和4 ×2都是求4个橙子可以分给几人的算式,得数都是8,它们能组成等式4÷1/2=4×2。教材里的“想一想,1/2与2有什么关系”在引导学生观察等式,研究等式从左边到右边的变化,初步发现整数除以分数可以变成这个整数乘分数的倒数,感受这可能是计算分数除法的策略和方法。因此说,4÷1/2的教学要领是建立等式、研究变化、领悟算法。第三步通过画图操作,计算4÷1/3和4÷1/4。这一步以4÷1/2的活动经验为基础,要求学生独立进行。在计算4÷1/3时,把代表1个橙子的圆三等分,表示出每人吃1/3个。通过画图看出1个橙子给3人吃,4个橙子给4×3=12(人)吃。据此写出等式4÷1/3=4×(3)。用同样的操作和思考,还能写出等式4÷1/4=4×(4)。寻找整数除以分数的算法是例题的教学任务,教材要求学生思考“括号里的数与除数有什么关系”,引导他们再次感受整数除以分数改写成乘法的关键与要领。

二、 验证猜想——确认算法。

例3仍然是整数除以分数,它的除数不是几分之一那样的分数,而是几分之几的分数。如果说例2是整数除以分数的特殊情况,那么例3就是一般情况了。例4是分数除以分数,能统摄前面教学的分数除以整数和整数除以分数,因而更具代表性。编排这两道例题,要得出分数除法的计算法则。

两道例题都有示意图,从图画里看到除法算式的商。例3用一根线条表示4米彩带,其中的每1米都平均分成3份,还涂色表示出1个2/3米。学生就可以在表示4米的线条上数出一共有几个2/3米,得到4÷2/3=6(段)。例4画了量杯的图,看着上面的刻度能够知道9/10里面有3个3/10,9/10÷3/10=3。

两道例题都要验证分数除法可以转化成分数乘法。例1计算分数除以整数,例2计算整数除以几分之一的分数,初步知道分数除法可以变成乘法来计算。例3加强对这种转化的体验,要求学生想一想等式4÷2/3=4×3/2成立吗?这个等式的出现,源自例1、例2的计算体验,是一个猜想。它是否成立?需要验证。其中左边的4÷2/3=6,在示意图中已经知道。右边的4×3/2,通过计算得到6。两道算式得数相同,表示等式成立,证实了猜想是正确的。教学例4的时候,学生对分数除法转化成分数乘法的心向比较明显和强烈了,教材让他们按这样的思路试着算一算,得到与示意图相同的得数,从而确认猜想成立。

两道例题都小结算法。例3从4÷1/2、4÷1/3、4÷1/4和4÷2/3,想想整数除以分数应该怎样计算。还可以相对于例1的分数除以整数的算法,体会分数除法变成乘法,应该用被除数乘除数的倒数。例4总结算法的视野比较开阔,要得出分数除法的计算法则。因此这里可以先小结分数除以分数的算法,再联系分数除以整数和整数除以分数的计算,找出这些分数除法在计算时有相同的策略与转化方法。然后用甲数和乙数分别表示被除数和除数,准确而简明地表达分数除法的计算法则。

三、 找数量关系式——列方程解题的关键。

这道例题的教学重点是为什么用方程解答,以及怎样列出方程。体会列方程解的原因,就掌握了这类实际问题的特点。学会了列方程的方法,就把握了解题的关键。教材把这道例题编排在计算教学的后面,就是要突出上述的思想方法。这也是例题只到写出方程为止,把剩下的都留给学生的原因。

分析数量关系是解决实际问题的一个重要步骤。解答分数应用题,要抓住分数的意义分析数量关系。“小熊”卡通提出的“大瓶和小瓶的果汁量有什么关系”,是引导学生仔细领会“小瓶的果汁量是大瓶的2/3”的含义。联系“求一个数的几分之几是多少,用乘法计算”这个概念,写出数量关系式。在“大瓶的果汁量×2/3=小瓶的果汁量”的上面,小瓶果汁量已知,求大瓶的果汁量,显然可以列方程解答。

理解这段教材,要注意“可以列方程解”是分析数量关系的结果。是通过在等量关系式上落实已知与未知后作出的决策。教学要详尽地展开“分析分数的意义→得出等量关系→选择解题方法”的过程,让学生知道应该怎样想,学会这样的思考。

“试一试”和练习十二第1题,都要求学生先把数量关系式补充完整,再解答。在教学列方程解决实际问题的起始阶段,提出这样的要求是必要的。能进一步突出解决实际问题要分析数量关系,帮助学生掌握分析数量关系的方法,体会列方程解决实际问题的特点。在基本掌握了思考的要领和方法之后,只要把数量关系式想在脑中,没有必须写出来的规定。

在练习十二里还安排了第三、四单元教学的分数应用题的对比练习,如第7、8题。“对比”既要比不同,准确地区分它们,也要比相同,在本质上把它们有机地联系起来。相同都表现在数量关系式上,即都要抓住分数的意义分析数量关系,而且都可以表示成数量关系式。不同也表现在数量关系式上。第三单元教学的分数应用题,已知条件都在数量关系式的左边,关系式右边的数量是要求的问题,因此根据数量关系式就能列出算式;第四单元教学的分数应用题,已知条件不集中在数量关系式的一边,而是分散在两边,要求的问题也不在数量关系式的右边,所以列方程解答比较方便。以第7题为例。

我们的教学历来十分重视区别不同的分数应用题,过去把两类应用题对立起来,过分强调区别,往往收不到理想的效果。新教材在数量关系上求同存异,组织两类应用题的知识结构,用对立统一的观点处理两类应用题的关系,已经在教学实践中得到肯定和赞赏。

四、 计算两步式题——巩固分数除法法则。

例6是乘除两步计算的实际问题,教学分数乘除混合或连除计算。例题可以列出不同的算式解答,两种解法都先分步解,其中有一步是分数乘法,另一步是分数除法。分步解答能够让学生明白,在计算分数除法时,要“乘除数的倒数”,在计算分数乘法时,不应这样做。这对计算综合式是十分有用的。另外,先分步解答还能降低列出综合算式的难度。

列出的两道综合算式,教材已经计算了一道。示范了计算分数乘除混合式题,一般先转化成分数连乘,再约分、相乘。突出了只能把算式里的除法变成“乘除数的倒数”。教材把另一道综合算式留给学生计算。计算前应该想一想,怎样把这个分数乘除混合的算式变成分数连乘的算式。计算后应该比一比,两道综合算式在计算时有什么相同点,进一步突出计算的策略和转化的方法。

在计算乘除混合式题时得到的体验会迁移到分数连除里去。教材在“试一试”之后让学生说说,分数连除或分数乘除混合运算可以怎样计算,促进迁移,发展认知结构,并在“练一练”中得到巩固。“练一练”的两道题分别是乘除混合和分数连除计算,在计算之后可以组织学生辨辨左题里的除数与乘数,比比右题里的整数与分数,说说计算的体会,使计算的思路更清楚、牢固,计算的技能更扎实、灵活。

分数除法教案 6

教学内容

一个数除以分数

教材第31、第32页的内容。

教学目标

1.结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。

2.能够熟练、正确地进行计算。

3.渗透转化的数学思想。

重点难点

重点:理解一个数除以分数的算理,掌握计算方法。

难点:能够熟练、正确地进行分数除法的计算。

教具学具

练习题投影片。

教学过程

一导入

1.口算。

3.解答应用题。

投影出示:小明步行2小时走了6千米。他每小时走多少千米?

学生计算后,说出这道题中的数量关系。

板书:路程÷时间=速度。

二教学实施

揭示课题:我们已经学过了分数除以整数的计算方法,如果除数是分数该怎样计算呢?今天,我们就来研究一个数除以分数的计算方法。

板书课题:一个数除以分数

1.出示例2。

(1)学生读题,明确题意。

提问:这道题应该怎样解决呢?(算出每人的速度各是多少,再比较大小)

(2)列式。

提问:怎样求小明的速度和小红的速度?

引导学生利用“速度=路程÷时间”这个关系式列式。

了2千米”。

提问:1小时行多少千米,在图上怎样表示?

小时行了多少千米)

4.归纳方法。

老师:观察比较例2的两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?

学生自由发言。

板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

5.练习。

(1)完成教材第32页“做一做”的第1、2、3题。

(2)完成教材第34页练习七的第1~8题。

学生独立完成,集体订正。

三课堂作业新设计

1.在○里填上运算符号,在( )里填上适当的数。

四思维训练参考答案

思维训练

练习七

板书设计

3.分数除以分数

4.甲数除以乙数(0除外),等于甲数乘乙数的倒数。

当一个数(0除外)除以小于1的数,商大于被除数;当除以大于1的数,商小于被

除数;当除数为1时,商等于被除数。另外,0除以任何数都为0。

备课参考教材与学情分析

本节课根据已有的数量关系,引出一个数除以分数的计算。在分数除以整数的基础上,例3研究一个数除以分数的计算,这是一个难点。教材以比较小明、小红两位同学“谁走得快些”,引导学生根据“路程÷时间=速度”这个数量关系列出两个除法算式。算式列出后,请同学们估一估结果是多少,是比被除数2大还是小,然后想办法进行验证,这个环节的设计既激发学生的探究欲望,又为发现被除数和商之间的关系留下悬念。另外,例2的设计体现了一种转化的思想。将“图”与“式”相对照进行解释、分析、说理,使学生在讲述算理的过程中,感受到用“数形结合”的思想解决问题的便捷性、科学性。

课堂设计说明

1.借助线段图引导学生一点点进行分析、说理,学生很自然就理解到要乘除数的倒数。因为有线段图辅助,学生理解起来很容易,自然而然地就明白了算理。

2.渗透思想,明确结构。

每一个数学知识都不是孤立存在的,计算教学更是如此,每个新内容都是在已学知识的基础上的进一步延伸,都是在已有知识基础上生长出来的。所以每次新课内容都不能把它看作一个孤立的内容。

小学六年级数学上册《分数除法》教案 7

教学目标:

1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

3.在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

教学重点:理解比的意义以及比与分数、除法之间的关系。

教学难点:理解比与分数、除法之间的关系,明确比与比值的区别。

教学准备:课件,学具。

教学过程:

一、创设情境,揭示课题

1.课件出示:20__年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。

教师提问:这就是杨利伟展示的两面旗,它们的长都是15 cm,宽都是10 cm。比较它们长和宽的关系,你能提出怎样的数学问题?

预设情况:

(1)长比宽多多少厘米?15-10;

(2)宽比长少多少厘米?15-10;

(3)长是宽的多少倍?15÷10;

(4)宽是长的几分之几?10÷15。

2.揭题:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法──“比”来表示。(板书课题:比的意义)

【设计意图】利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时对学生进行爱国主义教育。

二、探究新知,理解比的意义

(一)同类量的比

师:刚才我们用“15÷10”表示长是宽的多少倍,可以说成长和宽的比是15比10,记作15:10。那么,10÷15表示宽是长的几分之几,怎样用比表示它们的关系呢?(可以说成宽和长的比是10比15,记作10:15。)

师:想一想15比10和10比15一样吗?它们有什么不同?(引导学生理解比的前项、后项所表示的意义不同。)

(二)不同类量的比

课件出示:“神舟”五号进入运行轨道后,在距地350 km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252 km。那么飞船进入轨道后平均每分钟飞行多少千米?

1.读题理解题意,说说知道了哪些信息?

2.独立解答,说清解题思路。(速度可以用“路程÷时间”表示。)

3.尝试用比表示路程和时间的关系。(路程和时间的比是42252比90,记作42252:90。)

(三)比较分析

1.观察比较。

师:观察这三个比,说说它们有什么联系与区别?(引导学生发现这三个比都表示相除的关系,但前两个比中两个量都表示长度,相比的两个量是同类量;第三个比中的两个量,一个表示路程,一个表示时间,是不同类量,不同类量的比可以表示一个新的量。)

师:想一想,路程与时间的比可以表示哪个量?(速度)

2.归纳:什么叫比?(板书:两个数的比表示两个数相除。)

【设计意图】在比较分析中让学生进一步感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

三、自主学习,加深认识

(一)深化理解

1.自学比的相关知识。

学生自学教材第49页“做一做”之前的内容,思考以下问题:比各部分的名称是什么?怎样求一个比的比值?

2.汇报交流。

(1)比各部分的名称。

课件出示:15:10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值。)

(2)比值的意义。

师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

(3)练习:求出下列各比的比值:

3:5; 0.4:0.16; :8。

师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

【设计意图】自主学习也是学生探索问题、解决问题的重要途径。教师把学习的主动权交给学生,引导学生在抽象概括出比的意义的基础上自主学习比的相关知识,促进学生自主探究能力的发展。

(二)沟通联系

1.师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

讨论后根据学生交流反馈填写下表:

联系

区别

前 项

:(比号)

后项

比 值

一种关系

除法

被除数

÷(除号)

除数

一种运算

分数

分 子

—(分数线)

分母

分数值

一个数

2.请尝试用字母表示比和除法、分数之间的内在联系。

板书:。

师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15:10也可以写成,仍读作“15比10”。

3.师:足球比赛中的比分3:0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

【设计意图】在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

四、巩固知识,应用拓展

1.P49“做一做”第1题。

(1)出示课件,让学生根据条件和要求写出比并求出比值。反馈交流时,让学生说说两个相比的量是同类量吗?并说说有什么发现?(发现是同类量的比,这两个比的比值相等。)

(2)提问:小敏所花的钱数和练习本数之比是( ):( ),比值是( )。

请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

【设计意图】结合具体情境帮助学生巩固比的概念,为以后学习比例打下基础。

2.P49“做一做”第2题。

学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值后项;后项=前项÷比值。)

【设计意图】通过练习,引导学生进一步理解比和除法的关系,学会灵活运用所学知识解决实际问题。

3.练习十一第1题。

(1)请学生独立完成,反馈交流时引导学生明确比的前项、后项是有顺序的,前项、后项所表示的量与数据之间必须一一对应;第(3)题请学生说说比值的具体含义是什么。(表示平均每人制作的模型数量。)

(2)提问:你还可以写出哪几个比?说出它们的具体含义。(引导学生说出多个量的比。)

【设计意图】在具体情境中,教师充分挖掘习题资源,引导学生从量与量的关系这一角度去认识比,明确两个量(多个量)的比表示的是它们之间的倍数关系,进一步加深对比的意义的理解,深化对比的认识。

五、回顾总结,交流收获

师:说说这节课我们学习了什么?你有什么收获或问题?

【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己知识掌握情况。

分数除法教案 8

教学内容:

教材第27~28页的内容及练习。

教学目标:

1、借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2、掌握一个数除以分数的计算方法,并能正确计算。

3、培养学生解决简单实际问题的能力。

教学重难点:

1、掌握一个数除以分数的计算方法,并能正确计算。

2、整数除以分数的'计算法则推导过程。

教学过程:

一、创设情景 激趣揭题

1、猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

2、引入并板书课题:分数除法(二)

设计意图:设疑激趣。 明确目标。

二、扶放结合 探究新知

1、分一分,引导感知一个数除以分数的意义。

2、画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3、引导完成28页的填一填,想一想,你发现了什么?

4、引导归纳计算方法。

设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

三、反馈矫正

出示P28的试一试。

1、统一分数除法的计算法则。

2、指导完成P28练一练的1~4题。

四、小结评价 布置预习

1、引导小结:通过这节课的学习,你有什么收获?

2、布置预习: P29 分数除法(三)

板书设计: 分数除法(二)

4÷1/2=4×2=8 ;4÷1/4=4×4=16

一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

《分数除法》优秀教案 9

教学过程:

一、复习旧知识,引进新课

1、把8个饼平均分给4个人,每人分得几个?谁能列式?

2、把4个饼平均分给4个人,每人分得几个?

这两道题,是我们以前学过的,把一个数平均分成几份,求每一份是多少,

什么方法来计算?

二、激思讨论,探讨新知识

1、教学例1。

(1)把1个饼平均分给3个人,每人分得几个?怎样列式?

(2)求每人分得几个?用除法来列式。那每人到底分得多少个饼呢?你是怎么想的?(课件演示:一张饼的1/3就是1/3张饼。)

2、揭示课题:这节课我们就来研究“分数与除法”。让学生提出学习这一节课想知道的问题。

三、实际操作,寻找规律

教学例2。

1、把3张饼平均分给4人该怎么计算呢? “3 ÷ 4”表示什么意思?现在每

人能分得一张饼吗?

2、指导学法,让学生动手操作:利用3个圆形纸片,动手折一折、剪一剪、

分一分,看看平均每人能分到多少块?

3、各组汇报分法及分的结果。

组1:我们是把这3张饼,每个都平均分成4块,一共分成12块,每人得3块。

组2:一个饼一个饼地分。先将第一个饼平均分成4份,每人分得其中的一份;

将第二个饼也平均分成4份,每人也分得其中的一份;将第三个饼同样平均分成4份,每人又分得其中的一份。将每个人得到的饼拼在一起,也是3/4张饼。

组3:三个饼叠在一起,平均分成4份,每人分得其中的一份。每人分得3张饼的1/4,也是3/4张饼。

4、电脑屏幕显示三种分法,让学生尝试说出推理过程。

(1)把3个饼平均分成4份,我们可以吧什么看作单位“1”?

一份是多少个饼?一份是三个饼的几分之几?

(2)从屏幕显示和操作,我们可以看出:1个饼的3/4就是3个饼的1/4。

(3)3/4就是哪一算式计算的结果?

(4)3/4个饼表示什么意义?

四、比较分析,分析规律

1、观察等式1÷4=1/4,3÷4=3/4,,3÷5=3/5发现除法和分数有怎样的关系?

2、你发现分数与除法有什么联系?为什么用相当于?

板书:被除数÷除数=被除数/除数这个等式还有注意什么?在分数中分母能是零吗?为什么?

3、如果用字母a、b分别表示被除数、除数这个等式该怎样写?这里哪个字母不能是零?

4、联系复习时3÷5=3/5,现在你能运用分数和除法的关系来说明吗?

5、小结:一个分数不仅可以表示一个得数,也可以看作一个除法算式。

五、多层练评,反馈总结

1、75页自主练习1,生独立完成。

7÷12=( )/( ) 4÷3=( )/( )

9/5=( )÷( ) 3/8=( )÷( )

2、单位之间的互化。

7分米=( )/( )米 3克=( )/( )千克

23分=( )/( )时 59秒=( )/( )分

3、解决生活中的问题。

4、课堂总结:通过这节课学习你有什么收获?

六年级上册数学分数除法教案 10

教学目标:

使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。

教学重点:

整数除以分数的计算方法的推导。

教学难点:

理解“÷”转化为“×”的转化过程。

教学过程:

一、复习

1、说一说÷18的意义。

2、一辆汔车2小时行驶90千米,1小时行驶多少千米?

(1)口述算式和结果。

(2)板书:数量关系:速度=路程×时间

二、新授

今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?

板书课题:一个数除以分数

(1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?

教师板书:18÷ (出示线段图)

(2)推导18÷的计算方法。

引导学生分两步进行计算

第一部分:求小时行多少千米。

提问

1)、小时里面有几个小时?

2)、2个小时行驶多少千米?

3)、1个小时行驶多少千米?即小时行驶多少千米?

明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。

提问

1)、1小时里面有几个小时?

2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?

明确

1)为1小时5个小时,所以,要算18××5,也就是18×。

2)18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。

根据上面的推想,板书:18÷=18×,=45千米

答汔车1小时行驶45千米。

强调

1)18÷不便于直接除,把它转化乘法。

2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。

3)是的倒数,即的倒数是。

2、小结:引导学生归纳整数除以分数的计算方法。

板书:整数除以分数可以转化为乘以这个数的倒数。

三、巩固练习

1、在( )里填上适当的分数,使等式成立。

15÷=15×( )10÷ =10×( )

8÷=8×( ) ÷9=×( )

2、列式计算。

(1)一堆煤,每次用去,多少次才能用完?

(2)王晶小时做15朵花,1小时做多少朵花?

3、教科书第29页的“做一做”

四、作业练习八第1——4题。

一键复制全文保存为WORD
相关文章