作为一名教师,就不得不需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么优秀的教学设计是什么样的呢?为大家精心整理了乘法结合律教案(优秀9篇),如果对您有一些参考与帮助,请分享给最好的朋友。
教学内容
四年级(下册)第61~62页。
教学目标
1.使学生经历探索乘法运算律的`过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。
2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。
3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。
教学过程
一、复习旧知、导入新课
1.出示:
你能在下列的 内填上合适的数吗?
28+320=320+ ;
(27+138)+62=27+( + );
35+ = +35。
提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?
2.出示:
在下列○内填上合适的运算符号。
4○10=10○4 (2○3)○5=2○(3○5)。
谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?
3.导入新课。
谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?
【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。】
二、举例验证探索规律
(一)探索乘法交换律。
1.情景中感知乘法交换律。
出示例题。(略)
谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?
学生列式:3×5=15(人)或5×3=15(人)。
提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?
板书:3×5=5×3。
【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】
2.举例验证。
谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?
学生举例。
引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?
学生交流,教师选择一些等式板书。
电脑验证大数相乘的结果。
谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。
3.总结规律。
讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)
板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。
提示:你能像加法交换律一样用字母来表示乘法的交换律吗?
板书:a×b=b×a。
提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?
【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】
4.回忆乘法交换律在过去学习中的运用。
谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)
【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】
(二)探索乘法结合律。
1.初步感知。
谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。
出示例题。(略)
谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?
组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。
2.引导比较。
提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)
提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)
板书:(5×3)×4=5×(3×4)。
3.举例验证。
谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。
组织交流,教师有选择地板书一些等式。
4.总结规律。
讨论:
(1)你发现等号两边的算式中什么不变,什么变了?
(2)你能从这些算式中发现什么规律?
师生共同归纳乘法结合律。
板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。
谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?
板书:(a×b)×c=a×(b×c)。
【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测―举例验证―归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】
教学目标:
1、掌握乘法交换律和乘法结合律。
2、运用乘法交换律验算乘法。
3、培养学生的分析、概括能力。
重点难点:
掌握乘法交换律和结合律。
教学准备:
多媒体课件。
教学过程:
一、谈话引入,激发兴趣。
1、出示第33页主题图。
2、师:植树节快到了,四年级同学去义务植树。
3、师:看图,植树要做哪些事情?
(挖坑、种树、抬水、浇树…)
4、师:这里也有许多数学问题,想学吗?
二、自主学习,合作探究。
1、教学例1。(多媒体出示教材第33页主题图)
师:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。负责挖坑、种树的一共有多少人?
生算,小组里交流。生汇报。
生甲:4×25=100(人)
生乙:25×4=100(人)
师:他们算得对吗?从这里,你发现了什么?小组里议一议,交流。(交换两个因数的位置,积不变。)
你能举出几个这样的例子吗?
例:7×5=5×7 20×10=10×20
师:交换两个因数的位置,积不变。这叫什么?你给它取个名字?
生甲:乘法交换律。
师:你能用符号或字母表示它吗?
生乙:a×b=b×a
师:乘法交换律,以前我们已用过它,在什么地方呢?
生丙:交换因数的位置相乘,验算乘法。
师:对。试一试,好吗?
24×16 15×17
指名两生板演,集体订正。
2、教学例2。(多媒体出示主题图)
①师:看图,每组要种5棵树,每棵树要浇2桶水,一共要浇多少捅水?
生小组里交流,并汇报。
生甲:我先计算一共种树多少棵。
(25×5)×2
=125×2
=250(桶)
生乙:我先计算每组种树要浇水多少桶。
25×(5×2)
=25×10
=250(桶)
②师:那么(25×5)×2○25×(5×2)中间填上什么符号?
生:等号。
请你举出几个这样的例子。
生甲:(25×2) ×2=25×(2×2)
生乙:(lO×5) ×5=10×(5×5)
生丙:1O×(2×5)=(lO×2) ×5
③师:从上面的`算式中,你发现了什么?
生甲:三个数相乘,先乘前面两个数,或者先乘后两个数,积不变。
师:仿照加法的运算定律给它取个什么名字?
生乙:我叫它乘法结合律。
师:同意这种叫法吗?
师:你会用字母表示它吗?
生丙:(aXb) Xc=aX (bX。)
3、比一比,议一议。
师:比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?
生甲:我发现加法交换律和乘法交换律,都是交换数的位置,结果不变。
生乙:我发现加法结合律和乘法结合律,改变了题里的运算顺序,结果不变。
师:你们真聪明,说得好极了。
三、巩固运用,深化提高。
1、教材第35页“做一做,,第1题。
先计算,再运用乘法交换律进行验算。
2、教材第35页“做一做,,第2题。
生独立做,并汇报。
生甲:2×24×5
=48×5
=240(元)
生乙:2×(24×5)
=2×120
=240(元)
师:他们做得对吗?你是怎样判断的?
四、总结提升。
这节课,你学会了什么?还有什么问题和大家共同讨论?
一、教学内容:
北师大版四年级上册数学第二单元p45-p46
二、教学目标:
1、经历探索过程,发现乘法结合律和交换律,并用字母表示。
2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。
3、感受数学探索的乐趣,培养自主探索问题的能力。
三、教学重、难点
1、重点:探索、发现、理解和应用乘法结合律和交换律。
2、难点:乘法结合律和交换律的探索过程。
四、教学过程
(一)口算比赛,激发学习兴趣
1、出示口算题
5x225x425x8125x8
2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。
3、谈话引入:我们在前面已学过乘法的计算,在教学运算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?
(二)创设情境,发现问题
1、多媒体出示情境图
2、估一估
师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?
3、算一算
师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。
4、交流算法。
师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。
师板书:(3x5)x4=60(个)
3x(5x4)=60(个)
(三)比较算式的特点,发现规律
1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?
2、学生汇报:略
3、小结:(3x50)x4=3x(5x4)
(四)提出假设,举例验证
1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。
2、学生举例
同桌之间互相交流?
3、集体交流
谁愿意介绍一下你们小组举例的情况?
(五)概括规律
1、从刚才大家所举的例子看,每一组的结果都是相同的。这样的例子多不多?能举的完吗?
2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?
板书(axb)xc=ax(bxc)
板题:乘法结合律
(六)运用规律,解决问题
1、比较(3x5)x4=603x(5x4)=60两个算式,哪个更简便?
2、看来运用乘法结合律可以使一些计算简便。
3、练习:p46“试一试”的题目
学生独立完成,集体订正。
(七)探索乘法交换律
1、出示两组数据
4x5=5x412x10=10x12
2、师:认真观察,看看你有什么新发现?
3、学生汇报。
4、学生举例验证。
师:你能举出像这样的例子吗?
5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?
6、板书:axb=bxa
板题:乘法交换律
三、巩固练习
1、(完成课本第46页练一练第1题)
学生口答,集体订正。
2、应用乘法结合律和交换律,快速计算下面各题。
25x17x413x8x128(25x125)x(8x4)
(1)学生独立完成,个别板演。
(2)订正时让学生说说运用什么运算定律。
四、总结:这节课你有什么收获?
五、学生读课本第45、46页,质疑。
六、作业:课本第46页第2题。
乘法结合律 乘法交换律
【教材分析】
本课是北师大版数学实验教材四年级上册的一个教学内容,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程,通过对乘法结合律探索基本步骤的体验为学生今后的数学探索活动打下基础。
【学情分析】
学习方式上:四年级的学生,经历四年的课改实验,已具有一定的发现问题、提出问题、解决问题的能力。同学之间能够较好地合作交流与倾听。能比较主动地探究新知,运用已有的知识经验来学习新知。
知识技能上:在学习本课前,学生已经知道:25×4=100、125×8=1000以及整十整百整千数乘法计算比较简便。
【学习目标】
知识与技能:通过探索活动,发现乘法交换律、结合律,并用字母进行表示。在理解乘法结合律的基础上,会对一些算式进行简便计算。
过程与方法:经历数学探索过程,进一步体会探索的过程和方法。
情感、态度、价值观:感受数学探索的乐趣,培养自主探究问题的能力。
【学习重难点】
探索、发现、理解、应用乘法结合律。
【教学策略】
创设情境,组织探索,引导自主学习。
【教学过程】
一、创设情境,发现问题
师:同学们喜欢搭积木吗?
生:喜欢
师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?
生:想
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)
师:你知道图中有多少个小正方体吗?说说自己是怎样想的。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)
师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?
生:……
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证
师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?
生说师板书:
a×b﹦b×a叫做乘法交换律
师:a。b指的是什么?
(设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。)
三、探索乘法结合律
1、课件2出示情景图(书54页)
师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?
学生独立观察、思考后集体交流。(说说估计的方法)
师:谁估计的准确呢?请同学们在本子上算一算。
(学生独立思考,计算,教师巡视)
师:谁愿意把你的想法介绍给大家?
生举手汇报,师追问:怎样想的?
师引导从上面、正面观察
上面:(3×5)×4
师:这个算式可以写成(5×3)×4吗?
生:可以,都是求同一个物体,
生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。
师:出示4×(5×3)可以这样写吗?
生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。
正面:(4×5)×3
师:你还可以怎样写?根据是什么?
生:(5×4)×3,3×(5×4)
(设计意图:通过对算式的变换,巩固乘法交换律)
师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×4 3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。
生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。
师:可以写成(3×5)×4 = 3×(5×4)吗?
生思考回答。
(设计意图:通过对算式异同的比较,让学生自己发现规律,)
2、提出假设,举例验证
师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器
(学生在小组内举例交流讨论,教师巡视指导。)
师:谁愿意介绍一下你们举例的情况。
生:……
3、概括规律
师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?
生思考概括
师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?
生说师板书:
(a×b)×c﹦a×(b×c)叫做乘法结合律
三、运用模型,完成练习
1、学生独立完成“练一练”1题。最后运用课件集体订正。
2、运用乘法结合律很快算出38×25×4 42×125×8
生独立完成,小组交流后汇报
3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。
(设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算。对所学的
知识通过练习加以巩固运用。)
五、小结:
1、 这节课你学到了什么?
2、 我们是怎样认识这个好朋友的?
板书:
探索与发现
乘法交换律 乘法结合律
a×b﹦b×a (a×b)×c﹦a×(b×c)
5×4﹦4×5 (3×5)×4 =3×(5×4)
生举例略 生举例略
教研课题:
学法有效性研究
教学目标:
1、经历乘法结合侓的探索过程,能用字母表示乘法结合律,进一步培养发现问题和扯出问题的能力,积累数学活动经验。
2、能运用乘法交换律和结合律,对一些算式进行简便运算,体会数学方法的多样化,发展数感。
教学重点:
引导概括出乘法结合律,并运用乘法结合律进行简算。
教学难点:
乘法结合律的推导过程。
教学方法:
尝试教学法自主探究法
教学过程:
一、复习导入
1、25x6=70x5=14x100=
25x4=35x2=125x8=
2、师:看到同学们有这样快速准确的计算能力,老师真为你们高兴!
老师刚刚发现了两组比较有趣的算式,想和同学们一起分享。
二、探索发现
大屏幕出示两组算式
(2x4)x32x(4x3)
=8x3=2x12
=24=24
(2x4)x3=2x(4x3)
(7x4)x257x(4x25)
=24x25=7x100
=700=700
(7x4)x25=7x(4x25)
=24x25
=700
师:请大家观察这两组算式,再照样子仿写一组,然后小组内说说你们发现了什么?
小组交流汇报
(要求:学生能说出三个数相乘,先把前两个数相乘,再乘第三个数所得的积,与先把后两个数相乘,再乘每一个数所得的积是相等的。)
三、运用验证
师:数学来源于生活,生活中处处有数学。下面我们就找生活中的事例来解释自己所发现的这个事例。
出示书中的两个例子
要求:(1)先说清楚两个算式中每一步表示什么?
(2)再说两个算式特点是否符合我们发现的规律。
小组交流、汇报
师:任意三个数相乘,改变了运算顺序,积都不变吗?
先独立举例子,写练习本上。(大数用计算器)
再小组交流,板书展示一组。
四、表示对比
师:用语言文字来描述这个规律语句比较冗长、复杂,如果用字母表示就比较简洁了。用a、b、c三个字母表示这三个数,你能写出这个规律吗?
汇报
学生口述,板书
(axb)xc=ax(bxc)
看着字母表示的形式,完整地述说乘法结合律的意义。
板书课题乘法结合律
加法结合律和乘法结合律对比
五、简捷计算
直接出示125x9x8
生观察算示的特点,思考怎样算简便?运用了哪个运算律?
展示简便运算过程。
总结简便运算的步骤。
六、应用提升
1、说一说,下面算式分别运用了什么运算定律?
72+48=48+72()AxB=BxA()
a+(20+9)=(a+20)+9()
(△x○)xb=△x(○xb)()
2、教材55页2题、4题
七、总结
本节课你有哪些收获?
八、板书设计
乘法结合律
学生举例题
(axb)xc=ax(bxc)
【教学内容】
西师版四年级下册数学教材第17~18页例1~2,练习四第1题。
【教学目标】
1、经历在计算中探索发现乘法交换律、结合律的过程。
2、理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3、体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
【教学重难点】
在具体情景中探索发现乘法交换律、乘法结合律。
【教学过程】
一、复习旧知
1、以前学过的加法运算律有哪些?
加法交换律和加法结合律(学生回答)
2、说一说,下面的等式用了什么运算律?
80+a=a+80()20+30+40=20+(30+40)()
3、通过预习,你知道下面的等式用了什么运算律吗?
2x3=3x2()(2x3)x4=2x(3x4)()
引出课题:乘法运算律。
二、新课讲授
1、讲解
2x3=3x2
观察并思考:
(1)等号左边的算式和右边的算式有什么联系?
(2)从上面的观察与分析中,你能发现什么规律?
学生发现:两个因数交换位置,积不变。
师引导学生得出乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(axb=bxa)
随堂练习:计算下面各题,用交换因数位置的方法进行验算。
34x16 26x37
学生独立做,请两名学生上台板演。
2讲解
(2x3)x4=2x(3x4)
观察并思考:
(1)等号左边的算式和右边的算式有什么联系?
(2)从上面的观察与分析中,你能发现什么规律?
学生发现:每个算式只是改变了运算顺序,每排左、右两个算式计算结果相等,
三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(axb)xc=ax(bxc)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
三、课堂活动
1、练习四第1题:学生独立完成,全班交流,说出依据。
2、连线。
(学生独立完成)
23x15x217x(125x4)17x125x439x(25x8)39x25x823x(15x2)
四、课堂小结
今天这节课你都有哪些收获?还有什么问题?
五、作业
练习四第1、2题。
教学目标
1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。
2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。
3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。
教学过程
一、复习旧知、导入新课
1.出示:
你能在下列的 内填上合适的数吗?
28+320=320+ ;
(27+138)+62=27+( + );
35+ = +35。
提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?
2.出示:
在下列○内填上合适的运算符号。
4○10=10○4 (2○3)○5=2○(3○5)。
谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?
3.导入新课。
谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?
【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。】
二、举例验证探索规律
(一)探索乘法交换律。
1.情景中感知乘法交换律。
出示例题。(略)
谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?
学生列式:3×5=15(人)或5×3=15(人)。
提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?
板书:3×5=5×3。
【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】
2.举例验证。
谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?
学生举例。
引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?
学生交流,教师选择一些等式板书。
电脑验证大数相乘的结果。
谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。
3.总结规律。
讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)
板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。
提示:你能像加法交换律一样用字母来表示乘法的交换律吗?
板书:a×b=b×a。
提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?
【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】
4.回忆乘法交换律在过去学习中的运用。
谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)
【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】
(二)探索乘法结合律。
1.初步感知。
谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。
出示例题。(略)
谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?
组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。
2.引导比较。
提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)
提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)
板书:(5×3)×4=5×(3×4)。
3、举例验证。
谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。
组织交流,教师有选择地板书一些等式。
4.总结规律。
讨论:
(1)你发现等号两边的算式中什么不变,什么变了?
(2)你能从这些算式中发现什么规律?
师生共同归纳乘法结合律。
板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。
谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?
板书:(a×b)×c=a×(b×c)。
【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】
三、尝试运用理解规律
1.做“想想做做”第1题。(略)
2.尝试简便运算。
谈话:根据我们学习加法运算律的经验,想一想,学习乘法交换律和结合律,对我们的学习会有什么帮助呢?现在就让我们用学到的乘法运算律来进行简便运算吧!
出示第62页的“试一试”,学生尝试简便运算。
指名学生板演。
评讲:你能说出计算时运用了乘法的什么运算律吗。
小结。(略)
【说明:通过教师富有启发性的谈话,引导学生自觉推想乘法运算律的价值,并通过实践获得体验,使学生顺利地把在加法运算中学到的简便方法迁移到乘法的简便运算中来。】
四、巩固练习拓展提高
1.做“想做做做”第2题。
观察:你发现每一组题的上、下两道算式有什么联系?
谈话:每组的两道题,你可以任选一道题进行计算,看谁既会选又会算!
提问:你能说出算得又对又快的理由吗?
【说明:让学生不计算发现上下两道题的异同,并给学生选择算一道题的权利,既顺应了学生自觉“求简”的学习需要,又使应用乘法运算律进行简便运算成为学生的主动追求和自觉行为。】
2.做“想想做做”第3题。
谈话:你运用乘法的运算律使计算简便吗?比一比谁算得又对又快!
组织交流。
3.用简便方法计算。
25×6×4×15 25×125×32
学生练习后,组织交流。
五、引发联想,鼓励探究
谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?
127-53-27 218-69-31
127-27-53 218-(69+31)
72÷3÷8 54÷3÷2
72÷8÷3 54÷(3×2)
【说明:教师富有启发性的语言,让学生产生由此及彼的联想,同时激励学生选择一组或几组算式通过计算、观察、比较、猜想,来进一步探究减法和除法中的运算规律。不但让学生学生享受到了“跳一跳,摘果子”的快乐,同时又能让学生带着数学思考走出课堂,实现了课尽而思考犹在的生动局面。】
教学内容:
教材第33页的主题图,第34—35页的例1(乘法交换律)和例2(乘法结合律)以及练习五中的相关习题。
教学目标:
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点:
理解乘法交换律和乘法结合律。
教学难点:
能运用乘法交换律和乘法结合律进行简便计算。
教学准备:
多媒体。
教学方法:
尝试法、观察比较法。
教学过程:
一、复习导入
我们已经学过了哪些运算定律?请你用自己的话说一说,并说一说怎样用字母表示。
二、探究新知。
1、主题图引入
(1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息。
(2)你能提出哪些问题?(指定多名学生说一说。)
2、学习例1。
(1)出示例1:负责挖坑、种树的一共有多少人?
(2)启发学生思考:要解答“负责挖坑、种树的一共有多少人?”这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。
(3)学生独立列式计算。教师根据学生回答,边板书:
4x25=100(人)25x4=100(人)
(4)教师引导学生观察,比较两种解法有何异同。
启发思考:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(即:4x25=25x4)这个等式说明了什么?
(5)你能再举出几个这样的例子吗?(学生举例)
(6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)
(7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)
(8)让学生用自己喜欢的方式表示乘法交换律: axb=bxa。让学生说一说:这里的a、b可以是哪些数?
(9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。
(10)我们学习哪些知识时用了乘法交换律?
(11)反馈练习:完成教材第35页“做一做”的第1题。
3、学习例2。
(1)出示例2:一共要浇多少桶水?
(2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。
(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(25x5)x2和25x(5x2)。
(4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(25x5)x2=25x(5x2)
(5)哪一种方法计算起来更简便?
(6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。
(7)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)你们能给乘法的这种规律起个名字吗?
(8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
(9)用字母怎样表示?(axb)xc=ax(bxc)
(10)反馈练习:完成教材第37页的第2题。
4、乘法交换律和乘法结合律的应用。
(1)出示:怎样简便就怎样算?
5x37x2 125x4x8x25
(2)思考:怎样计算简便?
(3)学生独立完成,教师巡视指导,指定学生上台板演。
(4)集体订正,指定学生说一说各题运用了什么运算定律。
5、反馈练习:教材第35页“做一做”的第2题。
6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。
三、小结
学生小结本节课的学习内容。
教师引导学生回忆整节课的学习要点。
四、作业
《练习册》第14页第1课时的所有习题。
板书设计乘法交换律和乘法结合律
4x25=100(人)25x4=100(人)
4x25=25x4)axb=bxa
(25x5)x2 25x(5x2)
=125x2 =25x10
=250(桶)=250(桶)
(25x5)x2=25x(5x2)
(axb)xc=ax(bxc)
教学目标:
1、使学生理解和掌握乘法结合律,初步体验乘法结合律的应用。
2、通过乘法结合律公式的推导教学,培养学生思维能力,及科学的学习方法。
3、培养学生的分析、比较、综合能力以及初步的抽象概括能力
4、通过学生的自主学习,激发学生学习数学的兴趣。
5、结合教学中具体的教学事例对学生进行学习习惯、道德品质方面的教育。 教学重点:
引导学生概括出乘法结合律,初步体验乘法结合律的应用。
教学难点:
乘法结合律的推导过程是学习的难点。
教学过程:
一、复习准备,引入问题情境
请同学们做口算题。
2×550×225×4 8×12540×25
通过刚才的口算题,你们很快算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?
根据同学的回答总结出:5和2是一对好朋友,它们相乘等于十;25和4是好朋友,它们相乘等于一百;125和8是好朋友,它们相乘等于一千。
教师板书:5×2 25×4 125×8
请同学们要牢记这三对好朋友,一会儿它要给我们很大的帮助。
二、学习新课
1、出示主题图。
师:同学们,要保护我们的家园,就要植树造林,绿化环境。
2、引导学生观察:图上的同学们在干什么?上节课我们根据这副图的信息提出四个问题,已经解决了两个问题,今天我们一起解决第三个问题。
板书:一共要浇多少桶水?
师:要解决这个问题,要知道哪几个信息?
3、小组合作 ,列出综合式。
学生做完后说出自己是怎么想的。(一种思路是先求一共种多少棵树,再求一共浇多少桶水;另一种思路是先求一组浇多少桶水,再求25组一共浇多少桶水。)
板书:25×5×2 25×(5×2)
=125×2 =25×10
=250(桶)=250(桶)
答:一共要浇250桶水。
4、讨论、比较。
提问:
(1)这两个算式都有道理,而且它们的结果是相同的,说明这两个算式之间有什么关系?(是相等关系。)
板书:25×5×2=25×(5×2)
(2)等号左边和右边的算式有什么相同的地方?
议论后得出:等式两边算式中的3个因数一样,都是25,5和2;它们的运算符号是一样的,都是乘号。
(3)那它们有什么不相同的地方?
它们的运算顺序不一样,左边算式要把前2个数相乘,右边算式因为有小括号,所以要先算后边小括号里面的。
(4)哪个算式计算起来更简便呢?
师概括并启发提问:
这两个算式因数相同,运算顺序不一样,但结果都是相同的,这种现象是不是偶然的呢?
5、你能再举出几个这样的例子吗?如:
3×6×5= 3×(6×5)
7×4×20=7×(20×4)
25×8×4=25×(8×4)
启发提问:
(1)这三个等式中,每组等式的因数一样吗?(一样的)
(2)它们的运算顺序一样吗?(不一样的)
(3)三个等式左边的算式的运算顺序是怎样的?
议论后明确:三个等式左边的算式运算顺序是一样的,都是把前两个数先乘,再与第三个数相乘。
(4)三个等式右边的算式运算顺序是怎样的?
议论后得出:三个等式右边算式的运算顺序是一样的,都是先把后两个数相乘,再同第一个数相乘。
(5)它们每个等式左右两边运算顺序不一样,但它们的积呢?(积是一样的)
师概括:通过刚才的计算、讨论,看来咱们发现的现象不是偶然的,是有规律性的。
6、引导学生总结规律。
咱们再观察一下,在乘法中,三个数相乘,可以怎么算?还可以怎么算?
学生议论。在充分发表意见的基础上,概括并板书:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
板书课题:乘法结合律
7、用字母公式表示定律。
启发学生如果用a,b,c分别表示三个因数,乘法结合律的字母公式是什么?
板书:(a×b)×c=a×(b×c)
师概括:我们学习了乘法交换律,可以改变乘法中的两个因数的位置,今天我们学习乘法结合律可以改变乘法运算当中的运算顺序,它们的积都是不变的。
8、看教科书,讨论小精灵提出的问题。
9、乘法结合律的应用。
计算43×25×425×43×4
先让同学独立计算,然后讨论,明确应用了什么运算定律。
10、练一练
完成35页下面的“做一做”的第二题,请生板演,做完后集体订正。
三、巩固练习
1、练习六第2题。
2、 用简便方法计算。
42×125×8 25×17×4(25×125)×(8×4)