高一数学《等比数列的性质及应用》教案设计(优秀3篇)

上学期间,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科书上或考试的知识。为了帮助大家掌握重要知识点,以下是人见人爱的小编分享的高一数学《等比数列的性质及应用》教案设计(优秀3篇),在大家参照的同时,也可以分享一下给您最好的朋友。

等比数列 篇1

教学内容:

人教版小学数学教材六年级下册第107~108页例2及相关练习。

教学目标:

1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

重点难点:

探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

教学准备:

教学课件。

教学过程:

一、直接导入,揭示课题

同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

二、探索发现,学习新知

(一)教师与学生比赛算题

1.教师:你知道等于多少吗?(学生:)

教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

(二)借助正方形探究计算方法

1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

2.进行演示讲解。

(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?那么涂色部分还可以怎么算呢?,也就是说。

(2)继续演示,谁知道除了通分,还可以怎么算?

根据学生回答,板书。

(3)演示:那么计算就可以得到?。

3.看到这儿,你发现什么规律了吗?

4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。

5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?

6.尝试练习

【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。

(三)知识提升,探索发现

1.感受极限。

(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?再接着加,一直加到,得数等于?随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?

(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)

(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?

(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)

2.利用线段图直观感受相加之和等于“1”。

(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。

(2)学生看书思考。

(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。

【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。

3.课堂小结。

对于这种借用图形来帮助我们解决问题的方法,你有什么感受?

教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。

4.举一反三。

其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)

【设计意图】让学生体会“数形结合”是数学学习中常用的方法。

三、练习巩固

1.基础练习。

(1)学生独立计算。

(2)全班交流反馈。

【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。

2.小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?

解决问题

(1)全班读题,学生独立思考。

(2)指名回答。

(3)根据学生回答情况,连线(课件演示)。

(4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。

【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。

四、课堂总结

快下课了,请你来说说这节课有什么收获?

课后反思

图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近 1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。

等比数列 篇2

教学目的:1.掌握等比数列的定义。 2.理解等比数列的通项公式及推导; 理解等比中项概念。             教学重点:等比数列的定义及通项公式 教学难点:灵活应用定义式及通项公式解决相关问题 教学过程: 一、复习引入:1.等差数列的定义: - =d ,(n≥2,n∈n*) 2.等差数列的通项公式:     3.几种计算公差d的方法:d= - = =     4.等差中项: 成等差数列    二、讲解新课:   下面我们来看这样几个数列,看其又有何共同特点? 1,2,4,8,16,…,263;        ① 5,25,125,625,…;          ② 1,- ,…;            ③ 对于数列①, =  ;  =2(n≥2) 对于数列②, =   ;   =5(n≥2) 对于数列③, = · ; (n≥2) 共同特点:从第二项起,每一项与前一项的比都等于同一个常数

1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做等比数列的公比;公比通常用字母q表示(q≠0),即: { }成等比数列 =q( ,q≠0) 注意:等比数列的定义隐含了任一项 2.等比数列的通项公式1: 由等比数列的定义,有: ; ; ; … … … … … … … 3.等比数列的通项公式2: 4.既是等差又是等比数列的数列:非零常数列。 5.等比中项:如果在a与b中间插入一个数g,使a,g,b成等比数列,那么称这个数g为a与b的等比中项。  即g=± (a,b同号) a,g,b成等比数列 g =ab(a·b≠0) 三、例题例1 课本     p123例1,请同学们认真阅读题目,并自己动手解题。 例2 一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项。(课本p123例2) 例3  求下列各等比数列的通项公式: 1.  =-2,  =-8 (答案 ) 2.  =5, 且2 = -3   例4. 求数列 =5, 且  的通项公式 解:  以上各式相乘得:     例5. 已知{an}、{bn}是项数相同的等比数列,求证 是等比数列。(课本p123 例3) 四、练习: 1.求下面等比数列的第4项与第5项: (1)5,-15,45,……;    (2)1.2,2.4,4.8,……; (3) ,……. 2. 一个等比数列的第9项是 ,公比是- ,求它的第1项。 五、作业:课本 p 125习题3.4   1(2)(4),2,  5, 6,7(2),8,  9.

教学过程 篇3

一、提出问题

给出以下几组数列,将它们分类,说出分类标准。(幻灯片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)。

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题。假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的'共同特性,这是我们将要研究的另一类数列——等比数列。 (这里播放变形虫分裂的多媒体软件的第一步)

等比数列(板书)

1、等比数列的定义(板书)

根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义。学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的。教师写出等比数列的定义,标注出重点词语。

请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列。学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例。而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列。教师追问理由,引出对等比数列的认识:

2、对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即

问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0.

数学式子表示等比数列的定义。

是等比数列①。在这个式子的写法上可能会有一些争议,如写成,可让学生研究行不行,好不好;接下来再问,能否改写为是等比数列?为什么不能?

式子给出了数列第项与第项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式。

3、等比数列的通项公式(板书)

问题:用表示第

①不完全归纳法

②叠乘法

,…,这个式子相乘得,所以

(板书)(1)等比数列的通项公式

得出通项公式后,让学生思考如何认识通项公式。

(板书)(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已)。

这里强调方程思想解决问题。方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)。解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究。同学可以试着编几道题。

三、小结

1、本节课研究了等比数列的概念,得到了通项公式;

2、注意在研究内容与方法上要与等差数列相类比;

3、用方程的思想认识通项公式,并加以应用。

四、作业(略)

五、板书设计

三。等比数列

1、等比数列的定义

2、对定义的认识

3、等比数列的通项公式

(1)公式

(2)对公式的认识

一键复制全文保存为WORD
相关文章