无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?为大家精心整理了高一数学教案(优秀4篇),如果能帮助到您,小编的一切努力都是值得的。
回想半年的高一教学工作,有付出,有收获,有憧憬,有彷徨。一学期来,本人热爱本职工作,认真学习新的教育理论,广泛涉猎各种参考书,丰富知识,形成比较完整的知识结构,从而不断提高自己的教学水平和思想觉悟。严格要求学生,尊重学生,发扬教学民主,使学生学有所得,成绩不断提高。为了下一学年的教育工作做的更好,下面是本人的本学期的教学经验及教训。
一、政治思想方面:
认真学习新的教育理论,不断更新教育理念。积极参加新课改培训和校本培训,并做了大量的探索与反思。新的教育形式不允许我们在课堂上重复讲书,我们必须具有先进的教育观念,熟练掌握多媒体技术,才能适应教育的发展。所以我不但注重集体的理论学习,注意从书本中汲取营养,还认真学习多媒体制作知识,基本上掌握了Pt及flash和authorware制作课件,仔细体会新形势下怎样做一名好教师。
二、教育教学方面:
在新课标下,要学会用教材,理解课标,而不是教材,提高教学质量,关键是上好课。为了上好课,我做了下面的工作:
1、课前准备:备好课。
2、备教材备课标。认真钻研课程标准和教材,对教材的基本思想、基本概念吃透,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应如何处理教材和补充哪些资料,才能教好。
3、备学生。我所教班的学生有较大的差别,了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。
4、备教法。考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。本学期结合以前的教学,采用培养学生的自学能力和探究能力为主,对于高三学生,合理安排好课时很重要,如何让学生掌握课堂内容,不费功夫是很能达到的。以前多采用“抓”,“练”,在时间上抓紧和占用的同时,多增加练习,这提高成绩是很明显的,但学生的学习效率不高,也给其他科目造成作业无法认真的完成。所以本学期积极探索能够提高学生成绩的更好的方法。
5、优化课堂。
充分运用多媒体技术组织好课堂教学,增大课堂教学容量,注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,布置好家庭作业,作业少而精,减轻学生的负担。
6、要提高教学质量,还要做好课后辅导工作,虽然学生已是高三学生了,但在思想上是有较大的差别,还很爱好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,学习不自觉,针对这些问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生采取不同的方法,先全面了解学生的基本情况,争取准确的找出导致“差”的原因。在情感上温暖他们,取得他们的信任。从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重;还有在批评学生时,注意阳光语言的使用,使他们真正意识到自己所犯的错误或自身存在的缺点。
7、积极参与听课、评课,虚心向同行学习教学方法,博采众长,提高教学水平。
8、热爱学生,平等的对待每一个学生,让他们都感受到老师的关心,良好的师生关系促进了学生的学习。
三、工作考勤方面:
我热爱自己的事业,从不因为个人的私事耽误工作的时间。全期没请过事假、病假,出满勤、干满点,并积极运用有效的工作时间做好自己分内的工作。
社会对教师的素质要求更高,在今后的教育教学工作中,我将更严格要求自己,多方面提高自己的素质,努力工作,发扬优点,改正缺点,开拓前进。一份耕耘,一份收获。我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好
20xx-1-19
我们高一年备课组三位教师针对本学期的教学,做如下总结:
一、新课对学生应用数学的意识;
二、注重数学文化教育;
三、注重高中总复习问题;
四、教师与学生的交流;
五、数学教材的使用。
反思性教学是数学教师对自己教学行为的思考与研究,是对自己在教学中存在的问题的回答。教师在反思中根据课程标准的要求不断检验自己,追求教学全过程的合理性、反思性教学要求。我们教师积极关注教学目的、方法和效果,反思性教学要求教师具备课堂探究的能力,反思性教学需要教师有开放的心态,责任心和执著的精神。我们备课组教师尽责尽力,学生在教学能力得到充分发展,让学生学习获得成功,让学生自由地发挥潜在的心智、能力,不断地改进课堂的教学,教学中牢牢地把握“求实、求活、求新”的教学之原则,不断取得新的教学成果。结合现阶段教学谈二个方面反思:
一、教师应具备课堂的研究能力新课程要求每周课6节,要求我们教师在教学过程,不是教师从书本上准确无误地搬运知识的过程,而是要求教师设计一个连续的、生动活泼的,使学生感性认识与理性认识相结合的过程。因此教师具有组织教学内容和课堂教学能力。我们备课组每周安排1次备课,根据课程标准,逐一推敲,精心设计每堂课,但是我们也感到困难,对新课程把握的分寸。
我们根据学生的情况,在备课时,首先选择内容比较具体,难度较低,操作性较强的方法。我们归纳如下几点:
1、教师应少讲精讲,讲慢一点,不要只顾自己讲个不停,多留些时间给学生思考,讲时注意复习旧知识。
2、编写导学案,让学生自学。
3、简单问题不宜重复,难题多讲几个同类。
4、上课不要只提问优生,不歧视差生,不要以分数来衡量学生的好坏。
5、作业要认真批改,多讲练习,讲透些,不要只是答案。
6、注意幽默风趣,提高学生的兴趣。
7、提高应有启发性、思考性,并给学生思考和讨论的时间。
8、多与学生交流,多鼓励学生。
9、多教一些解题方法,讲一些数学的课外知识。
10、单元测验和期中与期末试卷扣紧课标,不出难题、怪题,试卷力争平均分达到95分。
二、教学应该重视新型师生关系新课程的理念下,新课程的核心理念“一切为了每一位学生的发展”,因此在教学过程中教师不仅应该指导“学会学习”。因此我们教师自己要“学会教学”,通过传统教学方式的改变,共同建立平等、民主、教学相长的新型关系,提高学生分析解决实际问题能力,教师还要在组织学生自主学习的过程中,只有从学生“学会学习”的角度去思考“学会教学”,才能真正“学会教学”,才能在不断变化的教育实践中,科学有效地指导学生“学会学习”。从目前情况看,相当一部分学生,还是不能够真正掌握。教学效果不算艰难,但是从学校教科室的调查,学生对数学信心,期待还是较好。因此,我们备课组在教学中,不好高骛远,不追求形式完美,而重视教学案例,关注学生的互动求知愿望。当然,教材只是学生阅读的一部分,教师还应该选择更丰富的材料让学生阅读,以达到通过阅读来发展学生的智力才能以及激发学生的学习兴趣的作用。
对于教师而言,只阅读教材当然不够,只是教教材更是不行!深入阅读、理解课标及相关的课标解读,阅读相关知识的来龙去脉,对教材的内容进行合理的重组,才是真正体现“用教材教”的理念。
一、教学分析
1、分析教材
本章教材整体主要分成三大部分:
(1)、圆的标准方程与一般方程;
(2)、直线与圆、圆与圆的位置关系;
(3)、空间直角坐标系以及空间两点间的距离公式。
圆的方程是在前一章直线方程基础上引入的新的曲线方程,更进一步要求“数与形”结合。所以学习有关圆的方程时,仍仍然沿用直线方程中使用的坐标法,继续运用坐标法研究直线与圆、圆与圆的位置关系等几何问题。此外还要学习空间直角坐标系的有关知识,以便为今后用坐标法研究空间几何对象奠定基础。这些知识是进一步学习圆锥曲线方程、导数和积分的基础。
2、分析学生
高中一年级的学生还没有建立起比较好的数形结合的思想,前面学习过直线知识,只是使学生有了用坐标法研究问题的基本思路,通过圆的概念的引入及其现实生活中圆的例子,启发学生学习的兴趣及研究问题的方法,培养学生分析探索问题的能力,熟练的掌握解决解析几何问题的方法-坐标法,渗透数形结合的思想研究问题时抓住问题的本质,研究细致思考,规范得出解答,体现运动变化,对立统一的思想
3、教学重点与难点
重点:圆的标准方程与一般方程;利用直线与圆的方程判断直线与圆、圆与圆的位置关系;空间直角坐标系的基本认识。
难点:直线与圆的方程的应用;会求解简单的直线与圆的相关曲线的方程;建立空间直角坐标系。
二、教学目标
1、掌握圆的定义和圆标准方程、一般方程的概念;能根据圆的方程求圆心和半径,初步掌握求圆的方程的方法。
2、掌握直线与圆的位置关系的判定。
3、在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。
4、培养学生科学探索精神、审美观和理论联系实际思想。
三、教学策略
1、教学模式
本节内容是运用“问题解决”课堂教学模式的一次尝试,采用探究、讨论的
教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识和基本能力,培养积极探索和团结协作的科学精神。
2、教学方法与手段--充分利用信息技术,合理整合课程资源
采用探究、讨论的教学方法,通过问题激发学生求知欲采用多媒体技术,目的在于充分利用其优良的传播功能,大容量信息的呈现和生动形象的演示(尤其是动画效果)对提高学生学习兴趣、激活学生思维、加深概念理解有积极作用。制作中,采用交互技术,使课件的机动性得到加强。
四、对内容安排的说明
本章分三部分:圆的标准方程与一般方程;直线与圆、圆与圆的位置关系;空间直角坐标系。
1、建立圆的方程是本节的主要内容之一。根据圆的几何特征(主要是动点与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的曲线方程。
通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。
2、通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:
(1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。
(2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。
3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。
用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:把代数运算结果翻译成几何结论。
五、教学评价
㈠过程性评价
1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。
2、对于方程的推导运用的方法,学生理解起来难度较大,主要采用让学生理解的基础上进行检测反馈
㈡终结性评价
1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。
2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。
一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能.
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
学生举例:平行四边形的对角线互相平. ……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的.)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.
(教师利用投影片,和学生讨论以下问题.)
例1 判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判断真假的语句叫做命题.
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0
中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”.
“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.
命题可分为简单命题和复合命题.
不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.
(4)命题的表示:用p ,q ,r ,s ,……来表示.
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.
对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.
3.巩固新课
例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.
(1)5 ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若ab=0 ,则a=0 .
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)