作为一名优秀的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么教案应该怎么写才合适呢?这里是整理的八年级数学教案(优秀10篇),希望可以启发、帮助到大家。
一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1.平移
2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。
3.简单的平移作图
①确定个图形平移后的位置的条件:
⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:
⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;
二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
1.旋转
2.旋转的性质
⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3.简单的旋转作图
⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成
①确定组合图案中的“基本图案”
②发现该图案各组成部分之间的内在联系
③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;
⑸旋转变换与轴对称变换的'组合;⑹轴对称变换与平移变换的组合。
教学目标:
1、 理解运用平方差公式分解因式的方法。
2、 掌握提公因式法和平方差公式分解因式的综合运用。
3、 进一步培养学生综合、分析数学问题的能力。
教学重点:
运用平方差公式分解因式。
教学难点:
高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:
我们数学组的观课议课主题:
1、关注学生的合作交流
2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:
1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?
2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?
①-x2+y2 ②-x2-y2 ③4-9x2
④ (x+y)2-(x-y)2 ⑤ a4-b4
3、试总结运用平方差公式因式分解的条件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?
5、试总结因式分解的步骤是什么?
师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)
生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)
师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)
生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5: a4-b4可分解为(a2+b2)(a2-b2)
生6:不对,a2-b2 还能继续分解为a+b)(a-b)
师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:
(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:
下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
(2) 教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤ 可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。
我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。
确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有最好,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……
一次函数的图象应用》
教学目标
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维。
3、情感、态度与价值观
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。
重、难点与关键
1、重点:一次函数的应用。
2、难点:一次函数的应用。
3、关键:从数形结合分析思路入手,提升应用思维。
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。
教学过程
一、范例点击,应用所学
【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。
y=
【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨。B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200)。
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习。
三、课堂总结,发展潜能
由学生自我评价本节课的表现。
四、布置作业,专题突破
课本P120习题14.2第9,10,11题。
板书设计
14.2.2一次函数(4)
1、一次函数的应用例:
学习目标:
1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质。
2、经历探索轴对称的性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力。
3、利用轴对称的基本性质解决实际问题。
学习重点:灵活运用对应点所连的线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。
学习难点:轴对称的性质的理解和拓展运用。
学习过程 :
一、探索活动
如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.
两针孔A、A和线段AA与折痕MN之间有什么关系?
1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.
2、那么 直线MN为什么会垂直平分线段AA呢?
3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).
例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线。
4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?
5.如图,再在纸上任画一点C,并仿照上面进行操作。
(1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?
(2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?
(3)轴对称有哪些性质?
6.轴对称的性质:
(1)成轴对称的两个图形全等。
(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
二、例题讲解
例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .
(2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证。
(3)AE与BF平行吗?为什么?
(4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?
(5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?
一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1、平移
2、平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。
3、简单的平移作图
①确定个图形平移后的位置的条件:
⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:
⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;
二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
1、旋转
2、旋转的性质
⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3、简单的旋转作图
⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成
①确定组合图案中的“基本图案”
②发现该图案各组成部分之间的内在联系
③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;
⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。
一、学习目标:
1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;
2、会运用两数差的平方公式进行计算。
二、学习过程:
请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:
(一)探索
1、计算: (a - b) =
方法一: 方法二:
方法三:
2、两数差的平方用式子表示为_________________________;
用文字语言叙述为___________________________ 。
3、两数差的平方公式结构特征是什么?
(二)现学现用
利用两数差的平方公式计算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
(三)合作攻关
灵活运用两数差的平方公式计算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)达标训练
1、、选择:下列各式中,与(a - 2b) 一定相等的是( )
A、a -2ab + 4b B、a -4b
C、a +4b D、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、计算:
( a - b) ( x -2y )
3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?
(四)提升
1、本节课你学到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值
一、教学目标
1、理解一个数平方根和算术平方根的意义;
2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3、通过本节的训练,提高学生的逻辑思维能力;
4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合
四、教学手段
幻灯片
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1、一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3、负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0。2的平方根是
④3的平方根是
⑤ 的平方根是
由学生说出上式的读法。
例1。下列各数的平方根:
(1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根为±9。即:
(2)
的平方根是 ,即
(3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根为±0。7。
小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。
六、总结
本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。
七、作业
教材P。127练习1、2、3、4。
八、板书设计
平方根
(一)概念 (四)表示方法 例1
(二)性质
(三)开平方
探究活动
求平方根近似值的一种方法
求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。
例1。求 的值。
解 ∵92102,
两边平方并整理得
∵x1为纯小数。
18x1≈16,解得x1≈0。9,
便可依次得到精确度
为0。01,0。001,……的近似值,如:
两边平方,舍去x2得19.8x2≈—1.01
知识技能
1、了解两个图形成轴对称性的性质,了解轴对称图形的性质。
2、探究线段垂直平分线的性质。
过程方法
1、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。
2、探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。
情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。
教学重点
1、轴对称的性质。
2、线段垂直平分线的性质。
教学难点体验轴对称的特征。
教学方法和手段多媒体教学
过程教学内容
引入中垂线概念
引出图形对称的性质第一张幻灯片
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的性质。
幻灯片二
1、图中的对称点有哪些?
2、点A和A的连线与直线MN有什么样的关系?
理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。
我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
定义:经过线段的中点并且垂直于这条线段,就叫这条线段的'垂直平分线,也叫中垂线。
探索勾股定理(二)
教学目标:
1、 经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
2、 掌握勾股定理和他的简单应用
重点难点:
重点: 能熟练运用拼图的方法证明勾股定理
难点:用面积证勾股定理
教学过程
七、 创设问题的情境,激发学生的学习热情,导入课题
我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?
(同学们回答有这几种可能:(1) (2) )
在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。
= 请同学们对上面的式子进行化简,得到: 即 =
这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。
八、 讲例
1、 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?
分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的 米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。
解:由勾股定理得
即BC=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为:
答:飞机每个小时飞行540千米。
九、 议一议
展示投影2(书中的图1—9)
观察上图,应用数格子的方法判断图中的三角形的三边长是否满足
同学在议论交流形成共识之后,老师总结。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
十、 作业
1、 1、课文 P11§1.2 1 、2
2、 选用作业。
教学目标
知识与技能
用二元一次方程组解决有趣场景中的数字问 题和行程问题,归纳用方程(组)解决实际问题的一般步骤。
过程与方法
1.通过设置问题串,让学生体会分析复杂问题的思考方法。
2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界 的有效数学模型。
情感态度与价值观
在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气, 树立自信心,并鼓励学生合作 交流,培养学生的团队精神。
教学重点
1.初步体会列方程组解决实际问题的步骤。
2.学会用图表 分析较复杂的数量关系问题。
教学难点
将实际问题转化 成二元一次方程组的数学模型;会用图表分析数 量关系。
教学准备:
教具:教材,课件,电脑(视频播放器)
学具:教材,练习本
教学过程
第一环节:复习提问(5分钟,学生口答)
内容:填空:
(1)一个两位数,个位数字是 ,十位数字是 ,则这个两位数用代数式表示为 ;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为。
(2)一个两位数,个位上的数为 ,十位上的数为 ,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为 。
(3)有两个两位数 和 ,如果将 放在 的左边,就得到一个四位数,那么这个四位数用代数式表示为 ;如果将 放在 的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为。
第二环节:情境引入(10分钟,学生动脑思考,全班交流)
内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况。你能 确定小明在12:00时看到的里程碑上的数吗?
第三环节:合作学习(10分钟,小组讨论,找等量关系,解决 问题)
内容:例1
两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。已知前一个四位数比后一个四位数大2178,求这两个两位数。
学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论。
第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)
内容:练习
1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字 之和,商是5,余数是1。这个两位数是多少?
2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左 边与放在右边所得的数之和为8484.求这个两位数。
第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)
内容:
1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流。
2.师生互相交流总结出列方程(组)解决实际问题的一般步骤。
第 六环节:布置作业
内容:习题7.6
A组(优等生) 2,3,4
B组(中等生)2、3
C组(后三分之一生)2